
3D MESH ANIMATION SYSTEM
TARGETED FOR MULTI-TOUCH

ENVIRONMENTS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bİlkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Duygu Ceylan

August, 2009

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Tolga K. Çapın (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüç

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Veysi İşler

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of the Institute Engineering and Science

ii

ABSTRACT

3D MESH ANIMATION SYSTEM TARGETED FOR
MULTI-TOUCH ENVIRONMENTS

Duygu Ceylan

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Tolga K. Çapın

August, 2009

Fast developments in computer technology have given rise to different applica-

tion areas such as multimedia, computer games, and Virtual Reality. All these

application areas are based on animation of 3D models of real world objects. For

this purpose, many tools have been developed to enable computer modeling and

animation. Yet, most of these tools require a certain amount of experience about

geometric modeling and animation principles, which creates a handicap for inex-

perienced users. This thesis introduces a solution to this problem by presenting

a mesh animation system targeted specially for novice users. The main approach

is based on one of the fundamental model representation concepts, Laplacian

framework, which is successfully used in model editing applications. The solu-

tion presented perceives a model as a combination of smaller salient parts and uses

the Laplacian framework to allow these parts to be manipulated simultaneously

to produce a sense of movement. The interaction techniques developed enable

users to carry manipulation and global transformation actions at the same time to

create more pleasing results. Furthermore, the approach utilizes the multi-touch

screen technology and direct manipulation principles to increase the usability of

the system. The methods described are experimented by creating simple anima-

tions with several 3D models; which demonstrates the advantages of the proposed

solution.

Keywords: Laplacian mesh editing, mesh segmentation, volume preserving mesh

editing, mesh animation, direct manipulation, multi-touch interaction.

iii

ÖZET

ÇOKLU DOKUNMATİK ORTAMLAR İÇİN 3
BOYUTLU MODEL CANLANDIRMASI

Duygu Ceylan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Tolga K. Çapın

Ağustos, 2009

Bilgisayar bilimindeki hızlı gelişmeler çoklu ortam, bilgisayar oyunları, sanal

gerçeklik gibi çeşitli uygulama alanlarının doğmasını sağlamıştır. Bütün bu uygu-

lama alanları 3 boyutlu geometrik modellerin biçimlendirilip canlandırılması pren-

sibiyle çalışmaktadır. Bu nedenle, bilgisayar modellemesini ve canlandırmasını

sağlayan çeşitli araçlar geliştirilmiştir. Fakat, bu araçların çoğu modelleme

ve canlandırma konularıyla ilgili belli bir seviyede deneyim gerektirmektedir.

Bu durum, deneyimsiz kullanıcılar açısından bir engel oluşturmaktadır. Bu

çalışmada, bu probleme o̧özüm oluşturmak amacıyla, özellikle amatör kul-

lanıcılar için tasarlanmış bir canlandırma sistemi sunulmaktadır. Benimsenen

ana yaklaşım model biçimlendirme uygulamalarında oldukça önemli kabul edilen

Laplace yöntemini kullanmaktır. Sunulan çözüm, bir modelin göze çarpan daha

küçük parçalardan oluştuğunu kabul ederek bu parçaların Laplace yöntemiyle

aynı anda biçimlendirilmesini sağlamaktadır. Böylece, modele hareket ediyor

hissi kazandırılmaktadır. Hem yerel düzenlemeleri hem de modelin toplu hareke-

tini sağlayacak etkileşim teknikleri geliştirilerek daha memnun edici sonuçlar elde

edilmektedir. Son olarak, belirtilen yaklaşım, çoklu dokunmatik ekran teknolo-

jisini ve direkt manipulasyon tekniklerini kullanarak sistemin kullanılabilirliğini

arttırmayı amaçlamaktadır. Belirtilen metodlar, önerilen çözümün faydalarını

göstermek amacıyla farklı modeller için basit canladırmalar yaratılarak test

edilmiştir.

Anahtar sözcükler : Laplace model biçimlendirmesi, hacim korumalı model

biçimlendirmesi, model animasyonu, direkt manipülasyon, çoklu dokunmatik

etkileşim.

iv

Acknowledgement

First and foremost, I would like to thank my advisor Asst. Prof. Dr. Tolga

K. Çapın for his endless support during my whole Master’s education. He did

not only guided me to choose an interesting research topic, but also provided me

with all the equipment I needed to accomplish this work. Besides helping me

to overcome the problems I encountered in my work, he always encouraged me

at the times I felt desperate. Finally, his valuable advice about academic life

and assistance in graduate study applications helped me to acquire a chance of

pursuing my academic studies in Switzerland.

Many thanks to my other thesis committee members, Prof. Dr. Bülent Özgüç

and Assoc. Prof. Dr. Veysi İşler for reading and reviewing this thesis. They also

gave me the opportunity to study different applications of Computer Graphics in

the courses they had taught and supported my graduate study applications.

I would also like to thank my friend Sezen Erdem for helping me to solve

various problems, such as setting up the working environment, fixing certain

code debugs, and formatting this thesis. My other friends, Ertay Kaya and Yusuf

Saran were mental supporters for me, especially towards the end of my studies.

Thanks to Ertay, I did not feel lonely at all during the tough working period

and Yusuf always found a way to cheer me up so that I can work with more

enthusiasm.

Finally, I am grateful to my parents and my sister, who always believed in

me. They always showed respect for my decisions and motivated me throughout

my education life.

v

Contents

1 Introduction 1

1.1 Contributions . 4

1.2 Organization of the Thesis . 5

2 Background 6

2.1 Differential Representations for Editing

Operations . 6

2.1.1 Overview of Differential Representations 7

2.1.2 Using Discrete Forms in Editing 7

2.1.3 Gradient Field Based Editing 8

2.1.4 Laplacian Surface Editing 9

2.2 Mesh Segmentation . 14

2.3 Volume Preserving Shape Deformations 16

2.4 User Interface Design . 17

2.4.1 3D Interaction Design . 17

vi

CONTENTS vii

2.4.2 Multi-touch Environments 19

3 Approach 20

3.1 Overview of the System . 20

3.2 Mesh Processing Component . 22

3.2.1 Model Loading . 22

3.2.2 Mesh Partitioning . 23

3.3 Animation Component . 30

3.3.1 Laplacian Framework . 32

3.3.2 Volume Preservation . 42

3.4 User Interface . 46

3.4.1 Multi-touch Environment 47

3.4.2 Interaction Techniques . 48

3.4.3 Direct Manipulation Principle 53

4 Results and Discussion 55

4.1 Mesh Partitioning . 55

4.2 Laplacian Framework . 59

4.3 Volume Preservation . 61

4.4 Usability Evaluation . 64

5 Conclusions and Future Work 70

List of Figures

1.1 A jump action can be represented with a series of drawings of the

individual states of the action. Displaying these drawings one after

another creates an illusion of movement. [40]. 1

2.1 A simple mesh. 10

3.1 Components of the system. 21

3.2 Flow of processes from the users’ point of view. 22

3.3 A sample mesh and its data structure. 23

3.4 Mesh data structure. 23

3.5 Principle curvature directions, T1 and T2, of vertex v of a simple

mesh is shown. The normal vector of the vertex is denoted by N. . 29

3.6 Mesh partitioning process illustrated for a sample model (a) Nodes

obtained after pre-partitioning process, each circle contains the

node number and the sign of the average mean curvature. (b)

Nodes 0,5,16,10, and 13 are merged to nodes 1,6,9,12, and 15 as a

result of Rule-1. (c) Nodes 1,6,9,12, and 15 are merged to nodes

2,7,8,11, and 14 as a result of Rule-1. (d) Nodes obtained after

the merging process (e) Model partitioned without merging step

(f) Model partitioned with merging step 31

viii

LIST OF FIGURES ix

3.7 ROI Specification - Blue vertex is the handle selected by the user.

Red vertices constitute the boundary and the in between part is

the freely moving part. 39

3.8 Flowchart explaining ROI determination and computation of new

vertex positions. 40

3.9 Cursor positions are projected to the z-plane on which the selected

handle lies. 41

3.10 Flowchart explaining ROI determination with more than one handle. 42

3.11 Vector field is defined from the vertices of a mesh part to the closest

points on the bounding box. 45

3.12 Laplacian framework uses the result of the previous Laplace oper-

ations, whereas the volume preservation component compares the

final mesh with the initial mesh. 46

3.13 Flowchart of the distinguish operation between single and double

clicks. 49

3.14 An improved Arcball widget. 50

3.15 An example arc between two cursor points, P0 being the cursor

down point and Pi being the cursor up point. 51

3.16 Translation vector obtained from cursor points. (a)Cursor moves

from the inner region to outer region. (b)First contact with the

widget is in the outer region. 52

3.17 Non-responsive region in the widget and different translation vec-

tors are shown. 53

4.1 Mesh partitioning results for a dragon model ((a) and (b)) with

different choices of the interval number, k (c) k=5 (d) k=6 (e) k=7

(f) k=8 . 57

LIST OF FIGURES x

4.2 Mesh partitioning results for a camel model ((a) and (b)) with

different choices of the interval number, k (c) k=6 (d) k=7 (e)

k=8 (f) k=9 . 58

4.3 A plane model with many details produces a large number of mesh

parts. 59

4.4 Tail of the fish is manipulated with a single handle shown by the

circle. (a) Original model (b) Manipulated model 61

4.5 Arms of the starfish are manipulated with appropriate handles

shown by the circles. (a) Original model (b) Manipulated model . 62

4.6 Each wing of the dragon is manipulated with double handles shown

by the circles. (a) Original model (b) Manipulated model 62

4.7 Models manipulated by disabling ((a) and (c)) and enabling ((b)

and (d)) volume preservation component. Red circles denote the

handle positions. 63

4.8 User interface of our system . 64

4.9 Animation of a dragon model. Transformation widget is visible. . 68

4.10 Animation of a starfish model. Transformation widget is visible in

(b), (c), (d), and (e). 69

5.1 Prototype design of the extended transformation widget. Orien-

tation of the z translation component is adjusted according to the

orientation of the index finger shown by an arrow inside the circles. 72

List of Tables

4.1 Partitioning time for different size of meshes 56

4.2 Computation times for matrix multiplication, factorization, and

back substitution processes of Laplacian framework, given in seconds. 60

xi

Chapter 1

Introduction

Human beings have always had the tendency to make representations of the

things they see around them [35]. Man-made drawings found in the caves were

the results of this tendency. Yet, single drawings or sculptures were capable

of representing only a particular moment in life [35]. Therefore, the search for

a means of representing objects or living things in a particular time interval

continued. Finally, the invention of motion picture camera and roll film have

met this request. By projecting photographs of an action onto a screen, the two

instruments have given rise to a new art form. This new art form was called

animation [35].

Figure 1.1: A jump action can be represented with a series of drawings of the in-

dividual states of the action. Displaying these drawings one after another creates

an illusion of movement. [40].

Animation was considered as a very powerful form of art; because it gave

the opportunity to represent emotions and thoughts without being limited to

a certain set of actions [35]. With the development of color technology, the

1

CHAPTER 1. INTRODUCTION 2

effect of animation was increased further. Finally, with the use of computers as

modeling and animation tools, the applications of animation art continued to

extend, making it a powerful tool for expressing motion, thoughts, and feelings.

Today computer animation is used in many applications, such as computer

games, animated web content, and simulators [24]. The variety of these applica-

tions give rise to research areas such as realistic object modeling and real-time

computer animation. As an illustration, commercial geometric modeling tools

have been developed such as 3Ds Max [3] and Blender [8]. These tools focus on

creation of 3D objects as well as manipulation of these objects. However, most

of these tools require an advanced knowledge or training about the concept, and

they are hard to use for inexperienced users. Frequent use of object modeling

and animation in computer applications makes the topic of shape modeling and

animation an active research area. The deficiency of the commercial animation

tools in providing an easy-to-use interface necessitates further research.

Related work to our system can be classified as object creation and object

manipulation systems. A number of object creation systems are based on a

sketching interface. As an example, Teddy [14] is one of the leading freeform

modeling systems, where users are able to model 3D objects within a short amount

of time by drawing 2D sketches. Similar easy-to-use object modeling systems

have triggered the study of object manipulation. The approaches presented for

this purpose fall into a variety of categories. Free form deformation (FFD) is

one of the popular categories. In FFD applications, an object is surrounded

by a lattice, and editing actions that are applied to the lattice manipulate the

object in response. Another important category of modeling solutions is the

differential representation. Differential solutions aim to encode shape features

of a model and preserve them during manipulation. Obviously, this property

of differential approaches makes them popular for realistic and shape preserving

editing operations. Because of this, several systems have been developed based

on this approach. Some of these system are also sketch-based, in which users

define editing commands either by silhouette sketching as in the work of Nealen

et al. [23] or gesture sketching as in FiberMesh [22]. There are also systems

that involve a direct manipulation interface, where users interact directly with

CHAPTER 1. INTRODUCTION 3

the object being edited. Examples of this kind include the work of Sorkine et al.

[33] and Lipman et al. [19].

The majority of the examples given above focus on building easy-to-use tools

for object modeling and local deformations of 3D models. The problem of build-

ing animation systems for novice users still exists as an active research area.

Traditional methods in computer animation production, such as key-frame ani-

mation or motion capture, are not applicable for novice users. These methods

either require profound experience about drawing, or complicated and expensive

setups. On the other hand, tools designed for inexperienced users should be

easy-to-use and should have simple interfaces. In this thesis, we aim to develop a

solution for this problem, by building an animation system via enhancing current

manipulation techniques. We present a tool which allows intuitive creation of

animations.

Our main approach in this work is based on improving differential methods

used for model editing operations. We accomplish this improvement by auto-

matically defining editing regions on a model and adding a volume preservation

mechanism. Both of these improvements have an obvious effect on creating realis-

tic animations. We also explore the use of the emerging technology of multi-touch

screens. This new technology not only presents a more appealing environment

for current desktop interfaces, but also triggers the development of new widgets

and gestures. The reasons for using a multi-touch screen in our case are easing

animation production and providing a more involving interface. Using multiple

fingers instead of only a single mouse cursor enables the object of interest to

be edited at several regions simultaneously, thus creating a more realistic anima-

tion. Moreover, the multi-touch screen gives the users the feeling of manipulating

objects by hand.

CHAPTER 1. INTRODUCTION 4

1.1 Contributions

In this work we present a novel 3D mesh animation system. We can list our main

contributions as follows:

• An automatic scheme for definition of animated model parts. In

our system, each 3D model is segmented into semantically meaningful parts,

before any editing operation takes place. When the user selects a few ver-

tices of the mesh to manipulate, the corresponding parts of the mesh are

automatically defined as the animating parts. Therefore, the user does not

have to specify which parts of the model are to be affected from the manipu-

lation. The segmentation process is based on the fact that humans perceive

objects as a collection of smaller parts. As a result, the parts marked as

animating coincide with the users’ expectations from the animation of the

object of interest.

• Volume preserving mechanism. When physical constraints in 3D an-

imation are considered, one of the most important facts that arise is con-

servation of mass. When the density of an object remains constant during

animation, this implies preservation of volume. For this reason, in our

system we combine this physical constraint with our interactive and direct

editing framework. Volume preservation is especially important for creating

stretch and squash effects that result in a more expressive animation.

• An interface that enables editing operations with direct control.

The interface that we are presenting benefits from the growing technology

of multi-touch interaction. We combine direct manipulation principles with

this technology to give the users direct control over the system. Being

able to manipulate models as if holding in hand increases the feeling of

immersion.

CHAPTER 1. INTRODUCTION 5

1.2 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents related work about the

important concepts for our work. These concepts include differential representa-

tions for mesh editing operations, mesh segmentation techniques, 3D user inter-

face design, and multi-touch environments. In addition, fundamental notations

about these concepts are introduced to enable a better understanding of our work.

Chapter 3 describes our approach for designing a mesh animation system targeted

for multi-touch environments. This chapter first gives a brief overview of our sys-

tem; then details the mesh processing, animation, and user interaction methods

that we have applied. Chapter 4 provides the results of our system and discusses

both advantages and disadvantages of our work. Finally, Chapter 5 concludes

the thesis by summarizing what has been done and what can be considered as a

future extension of our work.

Chapter 2

Background

In this chapter, we briefly review primary mesh editing techniques based on dif-

ferential representations and introduce the fundamentals of Laplacian surface

editing. Furthermore, we examine approaches regarding mesh segmentation, vol-

ume preserving shape deformations, and user interface design, other dominant

notions for our work.

2.1 Differential Representations for Editing

Operations

Meshes are widely used to represent models in computer graphics. A mesh is a

collection of vertices, edges, and faces that define the shape of the model being

represented. Several different surface representation schemes exist, each exhibit-

ing different features of a mesh model. To illustrate, simple triangular representa-

tions based on global cartesian coordinates are best for examining the topological

structure of the model [31]. However, these simple representations are not ad-

equate to carry modeling operations such as mesh editing, coating, resampling

etc. Lately, differential representations of surfaces have gained popularity due to

their advantages in modeling operations. These representations encode the shape

6

CHAPTER 2. BACKGROUND 7

features of a surface and enable these features to be preserved in a modeling op-

eration. In the following sections, we give a more detailed overview of the use of

differential representations in one of the most frequent modeling operations, mesh

editing. Mesh editing operations are also at the core of our system. We specifi-

cally focus on the Laplacian framework, a popular differential representation that

we have based our work on.

2.1.1 Overview of Differential Representations

Preserving the shape and geometric details of a model is vital for editing oper-

ations. For this purpose, local surface modeling representation approaches have

been proposed. Preserving geometric details means minimizing the difference be-

tween the deformations of local features of a model. These local features can be

encoded via differential representation techniques such as (i) discrete forms, (ii)

gradient fields, and (iii) Laplacian coordinates. These encodings are defined by

considering each vertex of a mesh with its neighboring vertices. Since differential

methods represent local features of a model, minimizing the difference between

local features before and after a deformation operation means minimizing the

difference between the differential coordinates.

In differential mesh deformation systems, users control the editing process by

updating the positions of a few vertices called handles. The new positions of the

remaining vertices are derived by considering the handle positions as constraints.

The core of this process is to recover global Cartesian coordinates from the de-

formed differential coordinates, which requires solving a sparse linear system [33].

2.1.2 Using Discrete Forms in Editing

Discrete form based approaches in mesh editing define a local frame at each

vertex, and represent the transition between the adjacent frames in terms of

discrete forms. To define a local frame at a vertex, the one-ring neighborhood

of the vertex is examined. Each edge connecting the vertex with a neighbor

CHAPTER 2. BACKGROUND 8

is projected onto the tangent plane of the mesh at the given vertex. The first

discrete form is used to encode the lengths of the projected edges and the angles

between the adjacent projected edges, whereas the second discrete form encodes

the normal directions. In other words, these two forms represent the geometry of

a vertex and its one-ring neighborhood up to a rigid transformation [20]. During

manipulation operations, local frames at each vertex are reconstructed from the

discrete forms. This problem is expressed as a sparse linear system of equations.

Once the local frames are reconstructed, global coordinates are also reestablished

by integration of the local frames. This is also expressed as a linear system of

equations.

In editing operations, users define a handle vertex to move freely and some

boundary vertices which remain fixed to limit the deformation. The positions of

these vertices are added to the system of equations to make it over determined.

Finally, the over determined system of equations is solved in a least squares

manner. The details of the approach are out of scope of this thesis. Readers can

refer to the work of Lipman et al. for further information [20].

2.1.3 Gradient Field Based Editing

Gradient field based mesh editing is based on the Poisson equation. The Pois-

son equation is an alternative to the least squares problem. To apply Poisson

equation to mesh editing, the coordinates of the target mesh are represented as

scalar fields on the input mesh. These scalar fields are used to form the gradient

field component of the Poisson equation [42]. In editing operations, the gradi-

ent fields are transformed by means of transforming triangles. Resulting vector

fields are no longer gradients of a scalar function. Therefore, they are considered

as guidance vector fields of the Poisson equation and the equation is solved to

reconstruct the desired mesh coordinates. Finally, a boundary condition for a

mesh is defined by considering the set of connected vertices on the mesh, the set

of vertex positions, the set of frames that define local orientations of the vertices,

the set of scaling factors, and a strength field. Strength field represents how

much a vertex is affected by the boundary conditions and is computed based on

CHAPTER 2. BACKGROUND 9

the distance between the initial and final vertex positions. During editing, scale

and local frame changes of the constrained vertices in the boundary condition

are propagated to the rest of the mesh. For detailed examples of applying this

scheme to mesh editing operations, the work of Yu et al. can be examined [42].

2.1.4 Laplacian Surface Editing

Laplacian coordinates are a form of differential representation used widely in mesh

editing. Conversion from Cartesian coordinates to Laplacian coordinates requires

only a linear operation, whereas the reconstruction of Cartesian coordinates is

accomplished by solving a linear system. This linearity of the approach makes it

very efficient and it is the main reason why we have also used Laplacian editing

in our work. In this section, we look at how these coordinates are defined and

used in editing operations.

2.1.4.1 Laplacian Representation

Laplacian coordinates focus on the difference between a vertex and its neigh-

borhood. An overview report by Sorkine about the subject describes Laplacian

representation in detail [31].

Let global Cartesian coordinates of a vertex i of the connected mesh M be

denoted by vi. The Laplacian coordinate (δ-coordinate) of this vertex is defined

as the difference between vi and the average of its neighbors [33]:

δi = vi − 1

di

∑

j∈N(i)

vj (2.1)

where N(i) is the set of neighbors of vertex i, and di is the number of neighbors.

Here the δ-coordinate is defined with uniform weights. As stated in the work of

Sorkine, uniform weights work sufficiently well in most editing scenarios [33].

However, cotangent weights can be used as well, especially when the considered

CHAPTER 2. BACKGROUND 10

mesh is not sufficiently regular [32].

The operation of transforming Cartesian coordinates to δ-coordinates can also

be represented with matrices. Let A be the adjacency matrix of the mesh where

Aij is 1 if (i, j) represents an edge, 0 otherwise. Similarly, let D be the diago-

nal matrix such that Dii = di. Then, the Laplacian matrix, L, which converts

cartesian Coordinates to δ-coordinates, is defined as follows:

L = I −D−1A (2.2)

Usually, the symmetric of the Laplacian matrix is used in computations. This

matrix can be called as Ls:

Ls = D − A (2.3)

Ls should be normalized before being used to define the transformation of

coordinates. We can illustrate this process with a simple example. Assume that

we have the simple mesh given in Figure 2.1.

Figure 2.1: A simple mesh.

The symmetric Laplacian matrix for this mesh is:

CHAPTER 2. BACKGROUND 11

Ls =

3 −1 0 −1 −1

−1 3 −1 0 −1

0 −1 3 −1 −1

−1 0 −1 3 −1

−1 −1 −1 −1 4

This matrix can be formed by just examining each vertex and its neighbors.

For example, the first row of this matrix corresponds to v0 and is computed as

follows. Since v0 has 3 neighboring vertices, the diagonal element becomes 3.

Then, the column elements corresponding to the neighbors of v0 are assigned the

value −1. Rest of the column elements are given the value 0.

Once this matrix is computed, it is normalized by setting the diagonal elements

in each row to 1. Then it is substituted into the transformation equation as shown

below. (This example uses x coordinates, transformations of y and z coordinates

are similar.):

Ls ∗ v = δ

1 −0.33 0 −0.33 −0.33

−0.33 1 −0.33 0 −0.33

0 −0.33 1 −0.33 −0.33

−0.33 0 −0.33 1 −0.33

−0.25 −0.25 −0.25 −0.25 1

∗

4.0

6.0

7.0

4.0

5.0

=

−1.0

0.666

2.0

−1.333

−0.25

In conclusion, constructing δ-coordinates from Cartesian coordinates is a

straightforward process which requires only a linear operation.

2.1.4.2 Laplacian Editing

The basic idea behind using Laplacian coordinates in mesh editing operations

is to perform manipulations on the mesh represented by these coordinates and

CHAPTER 2. BACKGROUND 12

reconstruct the global Cartesian coordinates afterwards.

As explained in the previous section, definition of Laplacian coordinates of

a mesh is not difficult. However, reconstructing cartesian coordinates from δ-

coordinates is more complicated. The immediate reaction to take is to invert the

Ls matrix defined previously. However, this matrix is singular. The singularity

can be shown as follows. The sum of the elements in each row sum up to zero

and since this matrix is symmetric, sum of the elements in each column is also

zero. In other words, when row vectors of the matrix are added, a zero vector is

obtained. Therefore, the last row of the matrix is in fact the sum of the other

rows negated. This means, the last row is dependent on the other rows and the

matrix rank is less than the matrix size. Since a matrix of size n x n and rank of

r, r < n is singular, the expression x = L−1
s δ is not defined. Therefore, Cartesian

coordinates can be recovered by defining at least one vertex as a constraint and

then solving the linear system. We can define this set of vertices as C. These

constraints are added to the previously defined system of equations. To illustrate,

we assume v0 is a constraint vertex for our mesh and compute the new Ls matrix:

L̃ =

1 −0.33 0 −0.33 −0.33

−0.33 1 −0.33 0 −0.33

0 −0.33 1 −0.33 −0.33

−0.33 0 −0.33 1 −0.33

−0.25 −0.25 −0.25 −0.25 1

1 0 0 0 0

This new matrix is named as L̃. Each constraint added to the system may

have a different weight, wi. In our example we have used the weight of 1.0.

Adding constraints to the system makes it over-determined, which means it

may not have an exact solution. However, the system can be solved in a least-

squares sense. Therefore, an error metric is defined for this purpose:

CHAPTER 2. BACKGROUND 13

E(v′) =
n∑

i=1

‖δi − L(v′i)‖2 −
∑
i∈C

wi‖v′i − ci‖2
(2.4)

The solution to this least squares problem can be expressed as matrix opera-

tions. L̃ is an (n + m) x n matrix, where n is the number of the vertices in the

mesh, and m is the number of constrained vertices.

v′ = (L̃T L̃)−1L̃T b

(L̃T L̃)v′ = L̃T b (2.5)

In the above equation, b denotes the right-hand side of the linear system. It

is a (n + m) x 1 vector where the first n elements are the δ-coordinates of the

mesh vertices, and the remaining m elements are the Cartesian coordinates of

the constrained vertices. If we return back to our example, the above equation

becomes:

(L̃T L̃)v′ = L̃T
(
−1.0 0.666 2.0 −1.333 −0.25 4.0

)T

2.2847 −0.6042 0.2847 −0.6042 −0.3611

−0.6042 1.2847 −0.6042 0.2847 −0.3611

0.2847 −0.6042 1.2847 −0.6042 −0.3611

−0.6042 0.2847 −0.6042 1.2847 −0.3611

−0.3611 −0.3611 −0.3611 −0.3611 1.4444

v′ =

3.2847

0.3959

2.2847

−1.6041

−0.3611

The product of a matrix and its transpose is a positive, semi-definite matrix

and can be factorized via Cholesky factorization. Therefore, the product (L̃T L̃)

can also be written as the product of an upper triangular matrix and its transpose,

M = (L̃T L̃) = (R̃T R̃). This factorization is used to solve the above equation.

Remember that an appropriate linear system should be formed for each x,y, and

z coordinate to obtain the full solution.

CHAPTER 2. BACKGROUND 14

(L̃T L̃)v′ = L̃T b

Mv′ = L̃T b

(R̃T R̃)v′ = L̃T b

R̃v′ = x

R̃T x = L̃T b

(2.6)

In editing operations, users choose some vertices on the mesh as handles and

manipulate them to achieve desired deformations. The manipulations of the

handles are propagated to the rest of the mesh until a boundary region is reached.

In other words, there is also a set of boundary vertices which remain fixed during

manipulation. In order to correctly reconstruct Cartesian coordinates, both the

handles and the boundary vertices are defined as constraints to form the above

over-determined system. The system matrix is factorized once at the beginning of

the editing session and the above equation is solved repeatedly as the movement

of the handle vertices change the right hand side vector.

2.2 Mesh Segmentation

As discussed in the previous section, developing different representation schemes

of mesh models has been an ongoing research area. Just like differential repre-

sentations are useful for encoding shape features, examining a model as a combi-

nation of simpler components is an attitude close to human perception [1]. This

is the main reason why we have developed the approach of applying mesh editing

operations to smaller parts of a model.

Mesh segmentation approaches can be analyzed in two main groups. The first

group of approaches concentrate on partitioning a mesh based on some sort of

geometric property such as curvature, whereas the second group of algorithms

focus on the features of the model to obtain meaningful parts [2].

CHAPTER 2. BACKGROUND 15

Among the approaches proposed for the second group of mesh segmentation,

the work of Katz. et al. can be listed [17]. This approach follows a two-step algo-

rithm. The first step decomposes the mesh into meaningful components keeping

the boundaries fuzzy via a clustering algorithm. The second step finds the exact

boundaries in accordance with the features of the model such as curvature and

the angle between the normals of the adjacent faces of the mesh. Another solution

presented by Katz et al. examines all models in a pose-insensitive representation

using Multi-Dimensional Scaling (MDS) [16]. Feature points of the model used

in segmentation are extracted in this representation. Another approach is Antini

et al.’s work, which is based on the visual saliency of the mesh parts [1]. The first

step of this algorithm is to compute, for each vertex, the sum of the geodesic dis-

tances between the given vertex and the remaining vertices. The sums computed

are normalized to a certain range and divided into a constant number of levels,

called nodes. The authors comment on the choice of this constant according to

experimental results. The second step of the algorithm examines the nodes with

respect to adjacency, curvature, and boundary information, and merges some of

the nodes with similar properties. To state briefly, the merging step aims to com-

bine adjacent nodes with the same sign of average curvature. Each node obtained

in the final stage represents a meaningful part of the mesh.

As stated before, in our work, we are interested in applying mesh editing

operations into smaller parts of a model. Since the human visual system perceives

a model as a combination of visual features, the smaller parts used in our system

should be the meaningful parts of the model. Therefore, the second group of

mesh segmentation solutions is more suitable for our system. Among the existing

solutions given above, our system is based on the approach presented by Antini

et al. [1] because it is based on visual saliency. The details of this approach and

how we have made use of it are given in the following chapter.

CHAPTER 2. BACKGROUND 16

2.3 Volume Preserving Shape Deformations

Animation of an object can be considered as a sequence of manipulation actions

applied to it, such as bending, stretching, and compressing. To obtain plausible

results, physical constraints should be taken into account during these manipu-

lations. Preservation of volume is one of these important animation constraints,

which follows from the conservation of mass principle. If the density of an object

remains constant during animation, volume is also preserved. For this reason,

applications that preserve volume are more advantageous in creating realistic

animations.

Zhou et al. [43] present a 3D mesh deformation system, which focus on pre-

serving volume during large deformations. Their solution is based on building a

volumetric graph from a 3D mesh, which contains both the original mesh vertices

and the points of a lattice constructed inside the mesh [43]. Volumetric features

are represented by the Laplacian coordinates of the nodes of this graph. Volume

is preserved by defining an energy function and minimizing it. Work of Hirota et

al. [12] is another example system which tries to preserve volume during free form

deformations. This approach also defines an energy function similar to potential

energy functions for elastic solids and tries to minimize it. This energy function

is defined so as to measure deformation and volume preservation constrains the

minimization process [12].

In contrast to the examples mentioned above, Funck et al. [38] present a more

straightforward mechanism to preserve volume. Even though, this work focuses

on mesh skinning applications, authors claim that the volume of a model in an

arbitrary deformation can be preserved similarly. This solution first defines a

displacement vector field and applies a volume correction step after each defor-

mation. The correction step adds the displacement field to the deformed mesh

coordinates with appropriate scaling factors in order to preserve the volume be-

fore and after deformation.

We base the volume preservation component of our work on the approach

presented by Funck et al. [38] because this approach does not require additional

CHAPTER 2. BACKGROUND 17

volumetric structures or control components. Therefore, it can easily be adapted

to triangular meshes. It is also sufficient to add a volume correction step after

Laplacian editing computations so that the overall complexity of the system is

not increased.

2.4 User Interface Design

Many graphics applications involve 3D scenes and require users to interact with

the scene. Most of these applications work on desktop environments with tradi-

tional input devices such as a 2D mouse, whereas some work with devices with

more degrees of freedom (DOF). Cubic Mouse [9], ShapeTape [10], and Control

Action Table [11] are some of the interesting examples of high DOF devices.

Another input device that is gaining high popularity is the multi-touch screen.

Different interaction techniques have been developed for these different input in-

struments. In this section we review two important examples of these techniques,

namely widget-based methods and direct manipulation based techniques. We

also discuss recent work on multi-touch environments, which is of our interest in

this work.

2.4.1 3D Interaction Design

Interaction design for a 3D application is more challenging compared to the 2D

case, because manipulating 3D objects on a computer is a less familiar experience

for novice users [13]. Moreover, most of the commonly used input devices supply

only 2D information. Therefore, techniques to map 2D input to 3D manipulation

tasks should be developed. Another user need related to 3D interaction is that

the interaction with the scene should be intuitive. The direct manipulation mode

of interaction best suits this second need, because it allows users to directly select

objects and apply actions on them. Meanwhile, the display immediately shows

the results of the user actions. This is especially important in model design and

editing systems. In conclusion, the challenges in 3D graphics applications have

CHAPTER 2. BACKGROUND 18

given rise to the design of more effective user interfaces which adopt direct ma-

nipulation approach, and the use of gestures and widgets to enhance interaction

with the objects in the scene.

Common 3D manipulation tasks include rotation, translation, and scale. Per-

forming these operations simultaneously is a challenging task with only a 2D

input device, since these operations have more than 2 DOF. Forcing the user

to constantly switch between different operation modes makes the interface dis-

tracting. The importance of gestures and widgets arises at this point because

they are a powerful tool for mapping the 2D input to 3D. Therefore, they are fre-

quently used in different applications. As an illustration, the work presented by

Draper et al. shows how gestures can be used in Free Form Deformation (FFD),

a common model editing scheme [7] . In traditional FFD interfaces, users have

to manipulate control points on the lattice of the object, which is a challenging

task because it is hard to foresee the result. To overcome this difficulty, Draper et

al. [7] present gestures for common operations such as bending, twisting, stretch,

and squash. Commands are given by drawing strokes directly on the model itself

instead of interacting with the lattice. Similarly, the work of Nealen et al. intro-

duces sketch-based gestures for mesh editing via differential representation [23].

The user sketches a stroke to define the silhouette of the mesh part to be edited

and performs the editing action by sketching the new shape of the silhouette.

This system also enables direct interaction with the object.

3D widgets are as important as gestures in describing 3D editing tasks. They

are used to place controls directly in a 3D scene with the objects. Generally

each widget connected to an object is responsible for a small set of manipulation

operations [5]. As an illustration, a common widget called Virtual Sphere enables

the users to rotate an object about an arbitrary 3D axis [6]. The object is assumed

to be surrounded by a virtual sphere ball and the user rotates this ball instead

of directly rotating the object. Similarly, the technique presented by Houde et

al. surrounds an object with a bounding box in the shape of a rectangular prism

and places handles at specific positions of the box to perform transformation

operations [13]. For example, rotation handles are placed at the corners of the

box where as lifting handle is found on the top face of the box.

CHAPTER 2. BACKGROUND 19

In conclusion, in the examples given above, users deal directly with the objects

in a scene via either a gesture or a widget. This feature enables them to feel more

involved in the actions they are taking; making the interface more easy-to-learn.

2.4.2 Multi-touch Environments

As discussed in the previous section, the ability to manipulate objects directly

on a screen is appealing for many users, because they feel more involved in the

task. Touch screens, especially multi-touch screens, enhance this ability by en-

abling users to touch objects on a screen so that they feel like controlling objects

directly. For this purpose, these instruments are increasingly used in graphical

applications.

The multi-point input feature of multi-touch environments makes them suit-

able for gestural interfaces. Therefore, a variety of related work focuses on build-

ing gestures and more efficient interaction styles for these environments. As an

illustration, Wu et al. presents different gestures for single finger, multi-finger,

single hand, and multi-hand usage especially for tabletop displays [41]. The work

of Benko et al. is another example which introduces new widgets and interaction

methods to enhance clicking and selection operations [4]. Similarly, Rekimoto

presents both a multi-touch sensor architecture and new interaction techniques

that are hard to implement with a traditional mouse [27].

The nature of multi-touch environments is also well suited for direct manip-

ulation interfaces. One of the best examples to illustrate this is the mesh editing

system presented by Igarashi et el. [14], which works both in traditional desk-

top environments and multiple-point input device SmartSkin [27]. In this system,

users are able to directly manipulate 2D meshes displayed on a multi-touch screen

by touching and moving them.

On the whole, we can expect multi-touch environments to provide a good

means to improve the previously presented approaches in effective interface design

with their primary feature of providing multi-point input.

Chapter 3

Approach

In this chapter, we present our approach to the problem of interactive mesh

animation. Our aim is to develop not only an editing but a simple 3D mesh

animation system. The system is designed for multi-touch environments and

targeted especially for novice users. The method we have adopted for mesh

editing, the additional work done to enable animation, and the principles we

have followed in user interface design are discussed in further detail.

3.1 Overview of the System

Our mesh animation system is composed of different components: mesh process-

ing, animation, and user interface components. To briefly explain, the mesh pro-

cessing component loads a model into the system and partitions it into meaningful

parts. The animation component is responsible of mesh manipulation operations.

Finally, the user interface component includes user interaction techniques. This

architecture is summarized in Figure 3.1 and each component is described in

detail in further sections.

Our mesh animation system is targeted for a multi-touch screen, but it can

work just as well on a traditional desktop computer. The flow of the processes in

20

CHAPTER 3. APPROACH 21

Figure 3.1: Components of the system.

this system from the users’ point of view is as follows. Once a 3D model is loaded

to the system, users can start animating it by first switching to the “Animation”

mode. Otherwise, the model can only be globally translated, rotated, or scaled.

When the “Animation” mode is active, users select a handle by just touching

(clicking) the desired location of the model. In the background, the part of the

model that will be affected from the editing operation is calculated automatically.

The manipulation is based on the “drag-and-drop” principle, which means users

move their fingers (or the mouse) which in turn move the handle. Meanwhile,

the rest of the affected part is deformed accordingly. By taking advantage of the

multi-point feature of the multi-touch screen, users can select as many handles

at different locations of the model as they want and deform different parts of the

model simultaneously. During the deformation process, the model can also be

globally transformed. Users select this command by double touching (clicking)

the model which enables a transformation widget. With this widget, users can

translate or rotate a model while deforming certain parts of it. This scenario is

summarized in the flow chart given in Figure 3.2.

CHAPTER 3. APPROACH 22

Figure 3.2: Flow of processes from the users’ point of view.

3.2 Mesh Processing Component

In this section, we focus on mesh processing component of our system, which

forms the base of the architecture. This component includes two smaller parts,

which are responsible for model loading and mesh partitioning. These two parts

are described in the coming sections.

3.2.1 Model Loading

The first action to take in order to use our system is to load a 3D model. 3D

models loaded should be triangular meshes since further processing operates on

triangles. The system currently supports 3D file formats, in which the coordinates

of vertices and indices of the vertices forming a face are included. In addition,

if the model includes textures, or special material and lighting effects, related

information is also read from the model file.

When a model is loaded, the system forms a mesh data structure. The main

components of this data structure are vertices and faces. The neighboring rela-

tions between these sets are also stored. For each vertex, lists of neighbor vertices

and neighbor faces are defined. A face is considered as a neighbor to a vertex,

if it contains that vertex. Similarly, for each face, lists of vertices forming the

face and neighbor faces are defined. A sample mesh and the corresponding data

structure is given in Figure 3.3.

CHAPTER 3. APPROACH 23

Figure 3.3: A sample mesh and its data structure.

The mesh data structure also contains a graph of nodes that represent the

partitioned parts of the model. This graph is completed as a result of the parti-

tioning process. Each node mainly contains the vertex indices that are found in

the part of the mesh represented by the node. Details of the mesh partitioning

process are discussed in the next section.

Figure 3.4: Mesh data structure.

3.2.2 Mesh Partitioning

One of our goals in this work is to extend current mesh editing approaches to

enable simple animations. Our main observation is that users tend to animate

salient parts of a model. This can be the tail of a fish, the ear of a dog, or the arm

of a character. This is due to the fact that the human visual system perceives a

CHAPTER 3. APPROACH 24

model as a combination of smaller parts. Therefore, a model partitioning scheme

should be close to human perception. Based on this observation, in our system,

a 3D model is partitioned into meaningful parts. The approach we follow is the

method described by Antini et al. [1], which is based on the visual saliency

of the parts of a model. This approach can be summarized in two steps. The

first step identifies different regions of vertices on a mesh based on distances

between them. The second step analyzes these regions and merges some regions

according to their adjacency and curvature features. The details of the algorithm

are discussed below.

3.2.2.1 Mesh Pre-partitioning

The mesh partitioning algorithm first defines a function on a mesh M with vertices

v based on geodesic distance:

g(vi) =
∑

vj∈M

ψ(vi, vj) (3.1)

The above function computes a geodesic distance value for each vertex by

summing the geodesic distances between the given vertex and any other vertex

denoted by ψ(vi, vj). Dijkstra’s shortest path algorithm is used to compute the

geodesic distance between two vertices [39]. On a mesh, this distance represents

the minimum length between the vertices connecting them through the edges of

the mesh.

After all the g(vi) values are computed, smallest (gmin) and largest (gmax) of

these values are used to normalize all the values to the range [0,1]:

gnormalized(vi) =

g(vi)− gmin
gmax − gmin

if gmin 6= gmax

0 otherwise
(3.2)

The normalized values of g(vi) are divided into a certain number of intervals.

If the number of intervals is n, then kth interval contains values in the range of

CHAPTER 3. APPROACH 25

[(k− 1)/n, k/n). This number of intervals affects the number of regions obtained

as a result of partitioning and can be fixed or determined with a heuristic. Antini

et al. [1] discuss that n = 7 is a reasonable choice according to the experimental

results. In our system, users can optionally change this number with a slider.

The possible values are chosen as 5,6,7,8, and 9.

Once the intervals are determined, adjacent vertices falling into the same

interval are grouped. Each group formed this way is called a node. These nodes

form a graph, where two nodes are connected if there exists an edge between two

vertices, one from each node. The number of node neighbors of each node can be

denoted as ei.

3.2.2.2 Mean Curvature Computation

Several properties are defined for each node in the graph. First of all, boundary

vertices of each node are determined. These are the vertices that have no neighbor

or have a neighbor in another node. Secondly, the average value of the mean

curvature is calculated for each node. For this purpose, the mean curvature for

each vertex should be computed. The approach described by Taubin [34] is used

for this computation, because it is linear in time and includes simple and direct

operations. The details of this algorithm are as follows.

The faces of the triangular mesh M defined before can be called f . For each

vertex vi of this mesh, the set of neighboring vertices Ni and incident faces Ii are

defined. Further, the number of neighboring vertices and the number of incident

faces at vi are denoted by di and bi.

The curvature computation begins with the estimation of the normals for each

vertex as the weighted average of the normals of the incident faces. The weights

are proportional to the surface area of the faces.

CHAPTER 3. APPROACH 26

nvi
=

∑

fjεIi

|fj|nfj

‖
∑

fjεIi

|fj|nfj
‖

(3.3)

In the above equation, nvi
and nfj

denote the normals of vi and fj whereas

|fj| is the surface area of the face.

Next, for each vertex, a 3 x 3 matrix is formed which has nvi
as an eigenvector

corresponding to the eigenvalue 0. The formulation of this matrix is as follows:

M̃vi
=

∑
vj∈Ni

wijκijTijT
T
ij (3.4)

In the above expression, Tij is defined as the projection of the vector vj − vi

onto the tangent plane 〈nvi
T 〉:

Tij =
(I − nvi

nT
vi
)(vi − vj)

‖(I − nvi
nT

vi
)(vi − vj)‖

. (3.5)

κij is the directional curvature in the direction of Tij and is computed as:

κij =
2nT

vi
(vj − vi)

‖vj − vi‖2 . (3.6)

Finally, the weight wij is chosen proportional to the sum of the areas of the

triangles that are neighbors of both vi and vj. The number of such triangles is 1

if one of the vertices lies on the boundary of the mesh, 2 otherwise. In addition,

for each vertex vi sum of these weights is set to 1.

∑
vj∈Ni

wij = 1 (3.7)

CHAPTER 3. APPROACH 27

As mentioned before, nvi
is an eigenvector of the constructed matrix corre-

sponding to the eigenvalue of 0. Other eigenpairs should be computed to estimate

the principle curvature directions. Taubin advises to form a Householder matrix

for this purpose [34]:

Qvi
= I − 2Wvi

W T
vi

(3.8)

The steps for computing Wvi
given in the above expression are not compli-

cated. To begin with, a first coordinate vector E1 = (1, 0, 0)T is defined. If

‖E1 − nvi
‖ < ‖E1 + nvi

‖, Wvi
is equal to the difference between the first coordi-

nate vector and the normal vector. Otherwise, it is equal to the sum of the two

vectors.

Wvi
=

E1 − nvi

‖E1 − nvi
‖ if ‖E1 − nvi

‖ < ‖E1 + nvi
‖

E1 + nvi

‖E1 + nvi
‖ otherwise

(3.9)

The first column of the Householder matrix is equal to either positive or

negative nvi
. The other two columns called T̃1 and T̃2 are used to estimate

the principal curvature directions. Since nvi
is an eigenvector of M̃vi

with the

eigenvalue 0, the following equality can be written:

QT
vi
M̃vi

Qvi
=

0 0 0

0 M̃11
vi

M̃12
vi

0 M̃21
vi

M̃22
vi

 (3.10)

When the 0-row and 0-column are discarded from the above matrix, a 2 x 2

matrix remains. This matrix is diagonalized with Given’s rotation to obtain an

angle θ [26].

θ =
M̃22

vi
− M̃11

vi

2M̃12
vi

(3.11)

CHAPTER 3. APPROACH 28

The angle obtained is used together with the second and third columns of the

Householder matrix Qvi
, T̃1 and T̃2, to find the other two eigenvectors of M̃vi

.

T1 = cos(θ)T̃1 − sin(θ)T̃2

T2 = sin(θ)T̃1 + cos(θ)T̃2 (3.12)

These two eigenvectors are the principle curvature directions, the curvature

values are computed from the corresponding eigenvalues, e1 and e2.

e1 = T T
1 Mvi

T1

e2 = T T
2 Mvi

T2

κ1 = 3e1 − e2

κ2 = 3e2− e1 (3.13)

Once the principal curvatures are computed, the mean curvature is simply the

average.

κmean = (κ1 + κ2)/2.0 (3.14)

Figure 3.5 illustrates this process by demonstrating the normal vector and the

principle curvature directions at a vertex of a simple mesh. The tangent plane,

〈Nvi

T 〉 is also shown.

3.2.2.3 Merging of Nodes

After the mean curvature for each vertex is computed as described, the average

mean curvature for each node is easily calculated. This property together with

the boundary properties is used to join adjacent nodes because the mesh could

be over-segmented at this stage. In other words, after all of the nodes and their

CHAPTER 3. APPROACH 29

Figure 3.5: Principle curvature directions, T1 and T2, of vertex v of a simple

mesh is shown. The normal vector of the vertex is denoted by N.

properties are defined, the second stage of the segmentation algorithm begins, in

which some nodes are merged together. Anitini et al. [1] have defined some rules

to carry out this process. These rules that should be applied in order are listed

below.

• As long as there is a node, i, with only one neighbor, that single neighbor,

called node j, should be examined. If the number of neighbors of node j is

less than or equal to 2 and the sign of the average mean curvature of both

node i and node j are the same, the two nodes are merged.

• As long as there is a node, i, with two neighbors, both of the neighbors

should be examined. If for a neighbor, called node j, the number of neigh-

bors is less than or equal to 2 and the sign of the average mean curvature

of both node i and node j are the same, the two nodes are merged.

• As long as there is a node, i, with more than or equal to two neighbors,

each of the neighbors are examined. If for a neighbor, called node j, the

number of neighbors is greater than or equal to 2 and the sign of the average

mean curvature of both node i and node j are the same, the two nodes are

merged.

CHAPTER 3. APPROACH 30

After the second phase of the algorithm is completed, a reasonable amount

of mesh parts are obtained. This algorithm is summarized in Figure 3.6. As

a final note, the segmentation task explained takes a reasonable amount of time

especially when the mesh size grows. For this reason, the partitioning is done as a

preprocessing step, and the results are stored as a file in our system so that when

the same model is to be segmented with the same choice of interval number, the

result can be loaded automatically from the file.

3.3 Animation Component

In this section, we primarily focus on how the meaningful parts of a model ob-

tained as described in the previous section are used in animation production.

Our main objective in this work is to provide users with the opportunity to cre-

ate simple realistic animations by enhancing mesh editing techniques. As stated

previously, users tend to animate salient parts of a model. For this reason, our

system allows editing operations to be applied to the meaningful parts of the mod-

els. In addition, we provide both an editing and global transformation interface

to enable users to translate and rotate a model while deforming. This results in

more realistic animations. Finally, the use of a multi-touch screen has an evident

effect in animation, since being able to deform different parts of a model simul-

taneously creates more expressive results. Even though all the stated features

have a positive effect on building an animation tool, the mesh editing technique

used has a special importance since it directly affects the results. Therefore, the

core of the animation component is the mesh editing process. As discussed in

the previous chapter, the method we have adopted for this purpose is based on

differential representations that have gained a high popularity lately. The logic

behind this choice is to be able to benefit from the advantages of differential meth-

ods. These methods are best for encoding shape features of a model and thus

suitable for detail-preserving mesh deformations [31]. We particulary focus on

Laplacian framework because conversion from absolute Cartesian coordinates to

Laplacian coordinates is a straightforward operation, whereas the reconstruction

of the Cartesian coordinates can be achieved by solving a sparse linear system

CHAPTER 3. APPROACH 31

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Mesh partitioning process illustrated for a sample model (a) Nodes

obtained after pre-partitioning process, each circle contains the node number and

the sign of the average mean curvature. (b) Nodes 0,5,16,10, and 13 are merged

to nodes 1,6,9,12, and 15 as a result of Rule-1. (c) Nodes 1,6,9,12, and 15 are

merged to nodes 2,7,8,11, and 14 as a result of Rule-1. (d) Nodes obtained

after the merging process (e) Model partitioned without merging step (f) Model

partitioned with merging step

CHAPTER 3. APPROACH 32

[33]. The linearity of this approach makes it appealing for real-time use and the

ability to preserve geometric properties in the reconstruction step is a necessity

for many modeling operations. On the other hand, Laplacian surface editing

does not focus on volume preservation, which is an equally important concept

for realistic animations. Thus, our animation component also includes a volume

preservation unit. The following sections detail both of these parts and underline

the improvements accomplished.

3.3.1 Laplacian Framework

Laplacian framework is best suited for encoding the shape features of a model be-

cause each vertex of a mesh is considered within its neighborhood. This property

of the framework enables reconstruction of Cartesian coordinates as outlined in

Chapter 2, while preserving geometric details of the model. On the other hand,

the main practical problem with Laplacian coordinates is their variance to scal-

ing and rotation operations. This leads to the fact that reconstructed Cartesian

coordinates once a mesh undergoes a linear transformation are erroneous. For

this reason, some sort of a scheme should be developed to compensate for this

deficiency. Different solutions have been proposed for this problem. In Lipman

et al.’s work [19], explicit rotations are estimated by defining a local frame for

each vertex. The system is solved again considering these estimations. The pro-

cess is repeated until a smooth result is obtained. Yu et al.’s work [42] also uses

explicit assignment of rotations, but the rotations of the handles are defined by

the user and propagated to the other vertices proportional to geodesic distance.

In contrast to explicit methods, Sorkine et al.’s work [33] presents an approach

where the transformation of each vertex is computed implicitly. This approach

has been applied to 2D mesh editing in the system presented by Igarashi et al.

[14].

Yet, not all the example solutions given above are applicable in our case. To

illustrate, the rotation estimation method discussed by Lipman et al. [19] requires

many iterations to achieve smooth results for complex models [31]. Similarly, the

approach of Yu et al. [42] requires users to define explicit rotations which can be

CHAPTER 3. APPROACH 33

considered as a very challenging task for novices, the target group of our system.

Regarding these facts, the solution based on implicit computation of rotations

presented by Sorkine et al. [33] is more suitable for our work.

Recall that editing operations are applied to a mesh M with vertices v. The

main idea of computing implicit rotations is to define a similarity transformation

matrix, Ti, and to represent this matrix as a function of the unknown vertex co-

ordinates. In other words, the least squares formulation to reconstruct Cartesian

coordinates provided in the previous chapter becomes:

E(v′) =
n∑

i=1

‖Ti(v
′)δi − L(v′i)‖2 −

∑
i∈C

‖v′i − ci‖2
(3.15)

Although both Ti and v′ are unknown in the above function, when Ti is rep-

resented as a linear combination of v′ there is only one unknown left. The logic

for defining Ti also lies in considering each vertex within its neighborhood. The

corresponding formulation is given in the work of Sorkine et al. [33] as follows:

E(v′) = min
Ti

(‖Tivi − v′i‖2 +
∑
j∈Ni

‖Tivj − v′j‖2) (3.16)

Here each Ti transforms the 1-ring neighborhood of a vertex to its new loca-

tion. Sorkine et al. [33] claim that each transformation should be constrained to

allow free rotation and isotropic scaling in order to avoid shearing. True 3D rota-

tions cannot be expressed linearly in 3D; a linear approximation can be developed,

however. The approximation proposed by Sorkine et al. [33] is as follows:

Ti =

si −hi3 hi2

hi3 si −hi1

−hi2 hi1 si

 (3.17)

As shown with this matrix, finding Ti means finding the unknown coefficients

which can be represented by the vector (si, hi)
T . The transformation Tivi can

also be represented as a multiplication of the below matrix with this vector.

CHAPTER 3. APPROACH 34

Pi =

vx 0 vz −vy

vy −vz 0 vx

vz vy −vx 0

 (3.18)

Tivi = Pi(si, hi)
T (3.19)

The minimizer function for Ti given above can be rewritten as

E(v′) = min ‖Ai(si, hi)
T − bi‖2 (3.20)

where the 3m x 4 matrix Ai (where m is the number of neighbors of vi plus 1)

is formed by writing the P matrices for the corresponding vertex and its neighbors

one below the other. Similarly, bi is the vector formed by writing the x,y, and z

coordinates of v′i and its neighbors. An example of these variables corresponding

to the vertex v0 in Figure 2.1 is given below:

A0 =

4.0 0 1.0 −5.0

5.0 −1.0 0 4.0

1.0 5.0 −4.0 0

6.0 0 1.0 −6.0

6.0 −1.0 0 6.0

1.0 6.0 −6.0 0

4.0 0 1.0 −3.0

3.0 −1.0 0 4.0

1.0 3.0 −4.0 0

5.0 0 1.0 −4.0

4.0 −1.0 0 5.0

1.0 4.0 −5.0 0

The minimization problem for each Ti is solved in a least squares manner:

CHAPTER 3. APPROACH 35

(si, hi)
T = (AT

i Ai)
−1AT

i bi (3.21)

In the general least squares problem given in Equation 3.15, there is an ex-

pression of Ti(v
′)δi. Just like defining Tivi as the multiplication Pi(si, hi)

T , this

expression can also be redefined. Letting Fi be the matrix

Fi =

δx 0 δz −δy

δy −δz 0 δx

δz δy −δx 0

 (3.22)

which contains Laplacian coordinates, δ-coordinates, of vi, Ti(v
′)δi can be

rewritten as Fi(si, hi)
T . Moreover, the expression for (si, hi)

T can be replaced

with the equality given in Equation 3.21. (Since bi contains the positions of v′i
and its neighbors, it is replaced with v′.)

Fi(A
T
i Ai)

−1AT
i v′ (3.23)

The expression Fi(A
T
i Ai)

−1AT
i represents a 3 x 3m matrix, where m is the

number of neighbors of vertex vi plus 1(for itself). The first three columns of

this matrix corresponds to the vertex itself, while rest of the columns correspond

to the neighboring vertices. This matrix is multiplied by bi which contains the

positions of v′i and its neighbors. The positions are placed in the same order of

the columns of the matrix. If the positions of all v′i are written one below the

other, a 3n x 1 vector is obtained. This vector can be multiplied with a 3n x 3n

matrix formed by writing the 3 x 3m matrices one below the other. However, in

order to obtain a matrix with 3n columns, for each vertex matrix, the columns

corresponding to the vertices that are not a neighbor should be filled with a

0. This process is illustrated for the example mesh given in Figure 2.1. In the

example given below, cij represents the 3 x 1 vector corresponding to the columns

for the neighbor vj in the 3 x 3m constructed matrix for vi.

CHAPTER 3. APPROACH 36

F0(A
T
0 A0)

−1AT
0 v′ =

(
cx
00 cy

00 cz
00 cx

01 cy
01 cz

01 cx
03 cy

03 cz
03 cx

04 cy
04 cz

c04

)
∗

(
v′0x v′0y v′0z v′1x v′1y v′1z v′3x v′3y v′3z v′4x v′4y v′4z

)′
T

⇓ overall equation

(
cx
00 cy

00 cz
00 cx

01 cy
01 cz

01 0 0 0 cx
03 cy

03 cz
03 cx

04 cy
04 cz

c04
...

)
∗

(
v′0x v′0y v′0z v′1x v′1y v′1z 0 0 0 v′3x v′3y v′3z v′4x v′4y v′4z

)T

(3.24)

The 3n x 3n transformation coefficients matrix shown above can be repre-

sented as M . After substituting M into the general least squares equation, only

one unknown, v′, is left.

E(v′) =
n∑

i=1

‖Ti(v
′)δi − L(v′i)‖2 −

∑
i∈C

‖v′i − ci‖2

=
n∑

i=1

‖Mv′ − L(v′)‖2 −
∑
i∈C

‖v′i − ci‖2

=
n∑

i=1

‖(M − L)v′‖2 −
∑
i∈C

‖v′i − ci‖2
(3.25)

As shown above, in order to compensate for the general linear transformations,

the Laplacian matrix found in the least squares problem is replaced with M −L,

called A. From this point on, the solution is just like the problem in the case

that ignores linear transformations. The difference is that, instead of solving 3

(n x n) matrix systems corresponding to x,y, and z coordinates, a single (3n x

3n) system is solved.

CHAPTER 3. APPROACH 37

(ÃT Ã)v′ = ÃT b

Mv′ = ÃT b

(R̃T R̃)v′ = ÃT b

R̃v′ = x

R̃T x = ÃT b (3.26)

Finally, Laplacian framework is ready to reconstruct Cartesian coordinates

without a problem. Next, we outline how we use this framework in our mesh

editing system.

3.3.1.1 Computation of Region of Interest

A typical editing animation scenario for our system is as follows. Once a 3D model

is loaded, users activate the deformation process by switching the application to

“Animation” mode and selecting handle vertices on the model by touching them.

(The design of the interaction techniques are further discussed in related sec-

tions.) As explained already, our system perceives a 3D model as a combination

of smaller parts which are defined as main deforming regions. Therefore, when a

vertex is chosen as a handle, the part containing it is determined as the region of

interest (ROI). All the vertices in this part except the handle are assumed to be

unconstrained freely moving vertices. However, the transition between the ROI

and the rest of the model should be smooth, meaning that there must be a set of

boundary vertices that remain fixed and constrain the deformation process. In

our system, this set is composed of vertices that are the first-order neighbors of

the vertices in the ROI and not belonging to the same part of the mesh. This

process is given in Algorithm 3.1.

Once the ROI with the handle and the boundary vertices are defined, the de-

tailed solution steps explained previously are applied to the sub-mesh defined by

these vertices. To begin with, Laplacian matrix corresponding to the sub-mesh

is formed and normalized. Then, for each vertex in the sub-mesh, the 3 x 3m

CHAPTER 3. APPROACH 38

Algorithm 3.1 Compute ROI for vi

vi = vertex selected as handle

n = node containing v

f = freely moving vertices list

b = fixed boundary vertices list

Nvi
= neighbors of vertex vi

for all vn ∈ n do

f ← f + vn

end for

for all vn ∈ f do

for all vj ∈ Nvn do

if vj 6∈ n then

b ← vj

end if

end for

end for

matrix as shown in Equation 3.24 is constructed. Later, these 3 x 3m matrices

are combined together to form the overall 3n x 3n transformation coefficients

matrix M (n is the number of vertices in the sub-mesh.) given in Equation 3.24.

This matrix is substituted to the general least squares problem provided in Equa-

tion 3.25. Finally, the difference between the matrix M and the Laplacian matrix

is computed and the result is multiplied with its transpose to form a positive def-

inite, symmetric matrix which needs to be factorized. The matrix multiplication

operation involves two 3n x 3n matrices and is of O(n3). This computation time

of this operation increases dramatically as the sub-mesh of interest grows. To

overcome this obstacle, we use a linear algebra package called Lapack++ [25].

The multiplication routines provided by this library optimizes the matrix multi-

plication process and decreases the computation time to reasonable values. (For

computation times of this operation, refer to the Results chapter.) Once the

multiplication process is complete, the resulting matrix is factorized and this fac-

torization is used to solve the least squares problem. The factorization step is

the main computational core of this process and is computed with a sparse linear

CHAPTER 3. APPROACH 39

Figure 3.7: ROI Specification - Blue vertex is the handle selected by the user.

Red vertices constitute the boundary and the in between part is the freely moving

part.

solver library, Taucs [36]. The factorization routine provided by this library is

multi-threaded which makes the code faster. After the factorization is computed

and saved, the new positions of the vertices of the sub-mesh are calculated by

substituting the updated positions of the handles to the right hand side of the

Equation 3.26. Solving the equation by back-substitution is sufficiently fast and

the manipulation actions are carried interactively. This whole process is summa-

rized in the flow chart given in Figure 3.8.

Users have a direct control on the handle positions in our system. Once a

handle is specified via a cursor (a traditional mouse or a finger), its position is

constantly updated based on the cursor position. However, the cursor has only

x and y coordinates, which correspond to its location on the screen, whereas the

handle positions are in 3D. Therefore, a projection of the cursor coordinates to

CHAPTER 3. APPROACH 40

Figure 3.8: Flowchart explaining ROI determination and computation of new

vertex positions.

CHAPTER 3. APPROACH 41

3D is necessary. This projection is computed based on a simple assumption that

cursor movements are limited to the z-plane on which the handle lies. In other

words, handles move on a plane parallel to the screen. Other approaches are also

possible to accomplish this mapping. As an illustration, handles can be moved

along a vector field as described in Section 3.3.2.

Figure 3.9: Cursor positions are projected to the z-plane on which the selected

handle lies.

Users can specify different handles on different parts of the model since the

system works on a multi-touch screen. If that is the case, the parts containing

each of the handles are determined. If two parts are neighbors, they are combined

to a single ROI. The boundary vertices are reconfigured to be the neighbors not

belonging to any of the parts. Similarly, system matrices are updated according

to the new ROI with the handles being the vertices chosen by the user. On

the other hand, if the parts are not neighbors, then they are considered as two

different ROI. For each ROI, its own least squares problem is defined and the

systems are solved independently. These steps are summarized in the flow chart

given in Figure 3.10. As a result of this explained approach, users manipulate a

model as individual parts or as a combination of parts.

CHAPTER 3. APPROACH 42

Figure 3.10: Flowchart explaining ROI determination with more than one handle.

3.3.2 Volume Preservation

Preservation of volume during manipulation and animation of objects is an im-

portant feature for obtaining plausible and realistic results. However, during

manipulation sessions based on the Laplacian framework, loss of volume can be

observed due to large deformations. To overcome this problem, we include a

volume preservation component in our system. Users are free to enable or dis-

able this component during animation production. This component is designed

based on the approach presented by Funck et al. [38] and aims to correct the

CHAPTER 3. APPROACH 43

coordinates of mesh vertices to preserve the volume of the model.

The logic behind the volume preservation operations is to define a displace-

ment vector field for the mesh. This field defines in which direction and how

strong each vertex should be moved after a manipulation action to preserve the

volume of the model. This means that the volume correction operations are

applied after each manipulation step.

The topology of a triangular mesh, M , with a vertex set of V can be repre-

sented by a triangulation set T , which contains a triple of vertex indices included

in each face. The volume of the mesh can be approximated by the volume of the

tetrahedra formed by each face and the origin [12]:

volume(M) =
1

6

∑

(i,j,k)∈T

vi · (vj × vk) (3.27)

In the above equation, · and× represent dot and cross products respectively. If

we represent the displacement field of the mesh by F , the volume preservation step

assumes that by adding this field to the manipulated mesh with an appropriate

scale factor, λ, the volume can be kept constant:

volume(M ′ + λ · F) = volume(M) (3.28)

In the above equation, M ′ denotes the manipulated mesh coordinates. If

the expression for the volume of a mesh is substituted into this equation, the

scaling factor can be represented in terms of the original and manipulated mesh

coordinates.

1

6

∑

(i,j,k)∈T

(v′i + λfi) · ((v′j + λfj)× (v′k + λfk)) =
1

6

∑

(i,j,k)∈T

vi · (vj × vk)

∑

(i,j,k)∈T

(v′i + λfi) · ((v′j + λfj)× (v′k + λfk))−
∑

(i,j,k)∈T

vi · (vj × vk) = 0

c0λ
3 + c1λ

2 + c2λ + c3 = 0 (3.29)

CHAPTER 3. APPROACH 44

where

c0 =
∑

(i,j,k)∈T

fi · (fj × fk)

c1 =
∑

(i,j,k)∈T

v′i · (fj × fk) + fi · (v′j × fk) + fi · (fj × v′k)

c2 =
∑

(i,j,k)∈T

v′i · (v′j × fk) + v′i · (fj × v′k) + fi · (v′j × v′k)

c3 =
∑

(i,j,k)∈T

v′i · (v′j × v′k)− vi · (vj × vk) (3.30)

In the above expressions, fi denotes the component of the displacement field,

F , applied to the vertex vi. λ is simply the solution of the cubic equation given.

A cubic equation has up to 3 real solutions. Since the manipulated mesh should

be changed as little as possible, the solution with the smallest absolute value is

chosen. Cardano’s method is used to solve the cubic equation [21].

The key step of the volume preservation component is the definition of the

displacement field. As manipulation actions are applied to the partitioned mesh

parts in our application, preserving the volume in these parts results in a global

volume preservation. Therefore, we define displacement fields separately for each

mesh part. The fields should be defined so as to change the volume of the mesh.

A suitable choice is to define displacement vectors pointing away from the mesh.

In order to obtain such vectors, we first compute the axis aligned rectangular

bounding box of each mesh part. For each vertex in a part, we find the closest

point to the vertex on the closest face of the bounding box. The vector joining the

vertex and the closest point constitutes the displacement vector. We can denote

these vectors by di. A simple mesh part and its displacement vectors are shown

in Figure 3.11.

Finally, we have to define how much a vertex should be affected by the defined

displacement vectors. It is natural for the vertices close to the handle selected

inside the mesh part to be affected more than the vertices close to the boundary

of the part. For this reason, the maximum distance between the handle and any

CHAPTER 3. APPROACH 45

Figure 3.11: Vector field is defined from the vertices of a mesh part to the closest

points on the bounding box.

other vertex inside the mesh part is computed. This distance corresponds to the

distance between the handle and one of the boundary vertices. This vertex is

given a weight of 0, whereas the handle is given a weight of 1. All the other

vertices in between are assigned a proportional weight:

wi = 1− distance(i, handle)

maximum distance
(3.31)

In the above equation, wi is the weight assigned to vertex i. Once the dis-

placement vectors and the weight of these vectors are computed, volume preser-

vation component becomes active. After each Laplacian manipulation cycle, the

transformations defined in Equation 3.17 are computed explicitly for each vertex.

These transformations are applied to the sum of the mesh vertices and the dis-

placement vectors. The difference between the two set of deformed positions are

scaled with the corresponding weights. The result is the final displacement field.

fi = wi(Ti(v
′
i + di)− Tivi) (3.32)

By substituting the values for fi into the Equation 3.29, the scaling factor, λ

can be computed. The final step is to update the deformed vertex coordinates

accordingly.

CHAPTER 3. APPROACH 46

v′′i = v′i + λfi (3.33)

v′′i denotes the final corrected vertex positions. There is an important draw-

back of this approach. Correcting the deformed vertex positions to preserve

volume changes the Laplacian coordinates of the vertices. If we keep applying

the Laplacian framework to the corrected positions, we will end up losing the

surface features of the model. For this reason, as long as the volume preservation

component is enabled, displayed vertex coordinates are chosen as the corrected

vertex positions. However, Laplacian operations are applied to the result of the

operations obtained in the previous cycle of the Laplacian framework. In other

words, Laplacian operations are independent from the volumetric calculations.

Each volume correction cycle compares the volumes of the initial model and the

model obtained at the last Laplacian cycle.

Figure 3.12: Laplacian framework uses the result of the previous Laplace opera-

tions, whereas the volume preservation component compares the final mesh with

the initial mesh.

3.4 User Interface

As discussed in the previous chapter, designing an intuitive interface for appli-

cations that require user interaction is very important, especially for 3D appli-

cations. Consequently, the user interface component of our system focuses on

techniques to enhance user interaction. In this section, we describe these tech-

niques in detail. More specifically, we discuss the effects of using a multi-touch

CHAPTER 3. APPROACH 47

screen in our application and the interaction methods developed to ease mesh

animation operations.

3.4.1 Multi-touch Environment

A notable characteristic of the system presented in this thesis is its applicability

to multi-touch screens. There are several reasons behind this design decision.

To begin with, multi-touch environments have begun to gain high popularity in

a variety of applications due to the potential advantages they present in user

interaction. The multi-point feature of these environments increases the possible

interactions that can be developed. This work aims to explore these advantages

in a very common graphics application, 3D modeling operations. Clearly, the

most significant benefit of using a multi-touch environment in our work is the

ability to manipulate several regions of a model simultaneously. This feature has

an unquestionable effect in animation creation.

The multi-touch screen used in our system is a product of Stantum Technolo-

gies [15]. This is a display device capable of detecting more than one contact point

at a time. Each contact point is represented as a “cursor” and given a unique id.

Event messages belonging to the current cursors are constantly generated. Once

a user touches the screen, a new cursor with a new id is created and an appropri-

ate message is generated. From then on, messages about any position change or

click events are received with the corresponding id. Although this device is not

designed to give pressure feedback, it is able to distinguish between single and

multi clicks. This is the main feature used to group user actions in our system.

As described already, our system accepts two kinds of user actions. The first

kind is related to local editing of a model, while the second kind corresponds

to global transformations. The single clicks on a model are used to define local

editing actions in the animation mode of the system. Handle vertices are specified

by directly touching the desired regions of a model. The number of handles can

be as many as the points of contact on the screen. After a selection is performed,

the handles follow the movements of the corresponding cursor, in other words,

CHAPTER 3. APPROACH 48

the finger of the user. Meanwhile, the user may want to globally transform the

same model. If that is the case, the transformation widget should be activated by

double clicking on any region of the model. The details of distinguishing between

single and double clicks are provided in the next section.

In summary, multi-point property of the multi-touch screen enables the users

to manipulate many regions of the 3D model and perform global transformations

at the same time. Thus creating simple animations become easier. For example,

in our system a dog model can be animated easily as if it is barking while walking.

3.4.2 Interaction Techniques

Defining 3D manipulations like rotation or translation is not a straightforward

process with 2D input. For this purpose, several interactions techniques or ges-

tures are used to enhance user interfaces. These techniques become even more

valuable if the target users are novices, as in our case. The nature of our ap-

plication and the multi-touch screen shape the development of the most suitable

interaction techniques.

To begin with, the most basic interaction technique in our application is based

on single and double clicks, which are used to define operation modes of the sys-

tem. Obviously, with a traditional mouse no additional work is needed, since

these events are automatically distinguished. However, with the multi-touch

screen, some basic steps should be taken. As explained in the previous sub-

section, the multi-touch screen represents points of contact as cursors and assigns

them a unique id. The messages generated for these cursors are down, move,

and up messages, which correspond to the actions of touching the screen with

a finger, moving the finger over the screen, and lifting it up respectively. When

a new contact point is detected on the multi-touch screen, a certain amount of

time delay begins. If a new down event is raised on the same point (or in a

small region about the point) before a move message during this delay, instead

of assigning a new id to the cursor, the cursor with the previous id is said to be

double clicked. If no other down message is generated during the delay, the cursor

CHAPTER 3. APPROACH 49

is single clicked. In conclusion, in our application, the number of down messages

for a cursor are adjusted to distinguish between single and double clicks. This

simple process is illustrated in Figure 3.13.

Figure 3.13: Flowchart of the distinguish operation between single and double

clicks.

As stated, double clicks are used to activate the global transformation widget.

Several facts constrain the design of this widget. First of all, in animation cre-

ation, rotation and translation are the most common operations and they should

be defined via a single widget to simplify the interface. In addition, since global

transformations are carried out simultaneously with manipulation operations,

most probably only a single hand or even a single finger will be used to interact

with this widget. Considering these facts, we have designed a widget, which is an

extension of Arcball [30]. Arcball is a technique to define 3D rotations with 2D

input. We have improved this traditional widget to specify translation data as

well. This widget is enabled and disabled with double clicks. Once activated, cur-

sor down and move messages with a position inside the widget area are mapped

to translation and rotation actions. The widget is deactivated only when another

double click is recognized.

CHAPTER 3. APPROACH 50

Arcball technique assumes that an object is enclosed in a sphere and the

user rotates this object by moving the input device on the circle, which is the

projection of the sphere on the screen. In other words, user interactions are

constrained within a circle. In our design, we define an additional outer circle

around this projection circle to produce the widget shown in Figure 3.14.

Figure 3.14: An improved Arcball widget.

The inner circle in Figure 3.14 is the original projection of the sphere and

the cursor movements within this circle are mapped to 3D rotations. The logic

behind this is to interpret cursor points as an arc and compute the rotation

from this arc using quaternion representation. A quaternion q(v, w) is a four

coordinate system, including a scalar part equal to cos(θ/2) and a vector part

equal to sin(θ/2) times a unit vector in the rotation axis where θ is the angle

of rotation [30]. Shoemake shows that rotation represented by the arc between

two points P0 and Pi can be computed as the product of the final point and the

conjugate of the first point. This product produces a quaternion which represents

the new orientation of the object enclosed in the sphere [29].

q(v, w) = PiP
∗
0 = (P0 × Pi, P0 · Pi) (3.34)

In the above equation, × and · denote cross and dot products respectively.

This equation follows from the quaternion multiplication. Each vector can be

CHAPTER 3. APPROACH 51

Figure 3.15: An example arc between two cursor points, P0 being the cursor down

point and Pi being the cursor up point.

considered as a quaternion with a scalar part of 0. Therefore, the cursor points

are denoted by quaternions with a 0 scalar part and a quaternion multiplication

is computed. This equation states that the arc between any two points can be

represented with a quaternion. The new orientation is the product of the quater-

nion computed when cursor motion just started with the quaternion obtained

in the ith cycle [30]. Once the final quaternion is derived, the corresponding ro-

tation matrix can be easily formed, as detailed in the work of Shoemake [29].

After the resulting quaternion q((vx, vy, vz), w) is normalized to satisfy the equal-

ity v2
x + v2

y + v2
z + w2 = 1, the corresponding rotation matrix is constructed as

follows:

M =

1− 2v2
y − 2v2

z 2vxvy + 2wvz 2vxvz − 2wvy

2vxvy − 2wvz 1− 2v2
x − 2v2

z 2vyvz + 2wvx

2vxvz + 2wvy 2vyvz − 2wvx 1− 2v2
x − 2v2

y

In our application, the interactions of the user with the transformation wid-

get is limited to the region denoted by the outer circle. If the cursor movements

are inside the inner circle, above computations are carried to calculate rotations.

Once the cursor moves to the region between the inner and outer circles, a trans-

lation component is added to the final orientation of the object. This translation

is denoted by the vector between the final cursor point and the last point on

the inner circle the cursor has passed when moving to the outer region. On the

CHAPTER 3. APPROACH 52

other hand, if the first contact with the widget is in the outer region, then the

translation vector is computed by defining a vector from the center of the widget

to the current cursor point. The intersection of this vector with the boundary of

the inner circle constitutes the start of the translation vector.

(a) (b)

Figure 3.16: Translation vector obtained from cursor points. (a)Cursor moves

from the inner region to outer region. (b)First contact with the widget is in the

outer region.

As long as the cursor hovers inside the region between the inner and outer

circles, the translation denoted by the most recent translation vector is added to

the current translation component. This way, when the cursor moves back to the

inner circle, the location of the object remains constant.

Finally, there is a thin non-responsive region between the two circles of the

transformation widget. In other words, when the cursor is moved inside this

region, no change is applied to either of the transformation components. The

main advantage of this non-responsive region is to avoid undesired location and

orientation changes due to noise data. Using a multi-touch screen for a long

time may create the risk of hand fatigue. This risk becomes vital for precise

interactions such as the transition between the inner and outer circles of the

widget. The cursor may be moved between the circles unintentionally producing

noise data. The non-responsive region discards the cursor movements close to

CHAPTER 3. APPROACH 53

the boundary of the circles and reduces the effect of this noise data. In addition,

this region is useful in changing the translation direction without affecting the

location and orientation of the object. Users may want to move an object in

an opposite direction after a certain transformation is reached without lifting

the cursor. If that is the case, the cursor is moved to the desired translation

region to reverse the translation vector. If this transition is done through the

non-responsive region by moving the cursor close to the boundary between the

widget circles, undesired transformation changes are avoided.

Figure 3.17: Non-responsive region in the widget and different translation vectors

are shown.

3.4.3 Direct Manipulation Principle

All the interactions with our system obey the direct manipulation principles.

Shneiderman explains the properties that a direct manipulation interface should

have as the following [28]:

• Object of interest should be continuously represented.

• Physical actions and button presses are used instead of complex syntax.

• Operations are rapid and reversible actions, which are immediately visible.

CHAPTER 3. APPROACH 54

Our system can be examined with respect to each of these items. As appropri-

ate to the first property, in our application the object of interest remains on the

screen during all operations performed and changes shape in response to user ac-

tions. The commands are specified by physical actions and simple button presses

such as directly touching the model and moving fingers on the model. Moving

fingers over the transformation widget also creates a direct interaction. Lastly,

the object of interest immediately responses to these actions by changing shape,

location, and orientation. These actions are also reversible. To illustrate, ma-

nipulations can be reversed by bringing the corresponding handles to their initial

positions. In addition, when the handles are released, the object is interpolated

to its initial shape.

The reason to base the interactions techniques used in our application on

the principle of direct manipulation is to benefit from the advantages of it. The

techniques proposed increase the usability of the interface, which is especially

important since target users of our system are novices. The direct interaction

methods give the feeling of manipulation objects by hand. This makes our system

a more realistic animation tool.

Chapter 4

Results and Discussion

This chapter presents experimental results for the different components of our

system in separate sections.

4.1 Mesh Partitioning

We begin with the mesh partitioning component. As stated in the previous chap-

ter, the partitioning process can be time consuming especially for large meshes.

For this reason, partitioning results for a particular mesh are stored in a file at

the preprocessing stage. Table 4.1 includes partitioning times for different size

of meshes. To provide a better comparison, partitioning process is repeated for

different choices of interval number (See Section 3.2.2.1) and the average compu-

tation time is given in seconds.

As shown in Table 4.1, even for a medium size mesh of about 1000 vertices,

the process takes about 2 minutes. The main computational core of this process

is the calculation of the geodesic distances between every two vertices of the

mesh. Geodesic distance computation is done based on Dijkstra’s shortest path

algorithm. The running time of this algorithm for a graph with n nodes, which

finds the shortest distance between a source node and every other node, is O(n2)

55

CHAPTER 4. RESULTS AND DISCUSSION 56

Table 4.1: Partitioning time for different size of meshes

Model No of

vertices

k=5

(sec)

k=6

(sec)

k=7

(sec)

k=8

(sec)

k=9

(sec)

avg

(sec)

man 214 1.319 1.355 1.344 1.300 1.312 1.326

fish 478 14.613 14.047 13.973 13.974 14.102 14.141

dog 1030 146.625 153.307 148.018 146.956 146.678 148.316

starfish 1890 878.143 892.741 868.929 895.875 914.253 889.988

[39]. Since this algorithm is run for each vertex of a mesh with n vertices, the

total running time in our case becomes O(n3). This is the reason for the dramatic

increases in the computation times. The numbers provided in the above table

show that storing segmentation results in a file for reuse is a very reasonable

design decision.

Our application provides a slider to change the interval number used in the

partitioning process. This number is used to group nodes during the process (See

Section 3.2.2.1) and affects the overall number of parts obtained. Antini et al.

comment that 7 is a reasonable choice for this number according to experimental

results [1]. Therefore, the options provided in our application (5,6,7,8, and 9) are

chosen around 7. Users are free to observe different partitioning results and use

the desired one. To illustrate the effect of the interval number, Figures 4.1 and

4.2 provide the partitioning results for different models with different choices of

this number.

Recall that mesh segmentation process works as a two-step algorithm. The

first step groups vertices of a mesh based on their geodesic distance values. The

second step defines the final model parts by examining curvature properties of

each group and joining the adjacent groups with similar curvature properties.

Models with smooth surfaces do not include rapid curvature changes. As a result,

a larger number of vertex groups are joined producing a reasonable number of

final mesh parts. The examples given in Figures 4.1 and 4.2 illustrate this fact.

On the other hand, models with sharp features or many details contain sudden

curvature changes, which constrain the merge phase of the segmentation process.

CHAPTER 4. RESULTS AND DISCUSSION 57

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Mesh partitioning results for a dragon model ((a) and (b)) with

different choices of the interval number, k (c) k=5 (d) k=6 (e) k=7 (f) k=8

CHAPTER 4. RESULTS AND DISCUSSION 58

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Mesh partitioning results for a camel model ((a) and (b)) with differ-

ent choices of the interval number, k (c) k=6 (d) k=7 (e) k=8 (f) k=9

CHAPTER 4. RESULTS AND DISCUSSION 59

Consequently, a large number of mesh parts are obtained. An example of such a

model is provided in Figure 4.3.

Animation actions are applied to model parts in our system and working with

many small parts complicates these actions. The human visual system perceives

a model as a combination of its main features at first glance, which makes it

easier to animate a model partitioned into its main parts. As a result, we can

conclude that, our system is more suitable for smoother models, such as cartoon

style characters.

Figure 4.3: A plane model with many details produces a large number of mesh

parts.

4.2 Laplacian Framework

As explained in the previous chapters, Laplacian model editing operations con-

stitute an essential part of our system. These operations are used in a real-time

CHAPTER 4. RESULTS AND DISCUSSION 60

interactive system, which makes the computation time an important measure for

evaluation. The main computational cores of the Laplacian framework are the

construction of the system matrix via matrix multiplication operations, and the

factorization of the product. Fortunately, these operations are carried only once

per ROI definition. Updating the right hand side of the general linear equation

given in Equation 3.26 with new handle positions and solving the system by back

substitution is sufficient for the remaining editing session. Table 4.2 demonstrates

the considerable difference between the running times of the multiplication, fac-

torization, and back substitution processes.

Table 4.2: Computation times for matrix multiplication, factorization, and back

substitution processes of Laplacian framework, given in seconds.

No of vertices in

ROI

Matrix Multipli-

cation (sec)

Factorization

(sec)

Back Substitu-

tion (sec)

100 0.0312 0.0156 0.0020

149 0.0936 0.0312 0.0020

240 0.3740 0.0624 0.0060

576 2.9550 0.0936 0.0312

850 15.600 0.1404 0.0312

969 20.813 0.1716 0.0468

As the table shows, computation times for the matrix multiplication pro-

cess increase in considerable amounts as the size of the ROI increases. On the

other hand, in our system, mesh segmentation component partitions a model into

smaller parts, which constitute the main ROI blocks. Therefore, in most of the

cases, size of the ROI is limited to the size of one or two model parts. In other

words, computation complexity of the multiplication operation does not consti-

tute a serious problem. Moreover, as explained above, this operation is carried

only once per ROI specification, having no major effect on subsequent the inter-

activity of the system. Furthermore, automatic generation of the ROI from the

model parts discards the need for explicit definition of the ROI and the boundary

vertices. For this reason, our system presents an easier interface compared to

the traditional Laplacian editing systems. Below we provide some models which

have been manipulated by the Laplacian framework. These examples include

CHAPTER 4. RESULTS AND DISCUSSION 61

cases where only a single handle, multiple handles in different model parts, and

multiple handles in the same model part are selected.

(a)

(b)

Figure 4.4: Tail of the fish is manipulated with a single handle shown by the

circle. (a) Original model (b) Manipulated model

4.3 Volume Preservation

As described earlier, manipulation of meshes with the Laplacian framework may

result in loss of volume. The volume preservation component of our system,

tries to update mesh vertices in order to preserve the initial volume. During

this process, vertices are assigned automatic weights so that nearby regions of

a handle are affected more by the volume correction operations compared to

farther regions. Figure 4.7 shows example models manipulated by the Laplacian

CHAPTER 4. RESULTS AND DISCUSSION 62

(a) (b)

Figure 4.5: Arms of the starfish are manipulated with appropriate handles shown

by the circles. (a) Original model (b) Manipulated model

(a) (b)

Figure 4.6: Each wing of the dragon is manipulated with double handles shown

by the circles. (a) Original model (b) Manipulated model

CHAPTER 4. RESULTS AND DISCUSSION 63

framework with and without applying volume preservation.

(a) (b)

(c) (d)

Figure 4.7: Models manipulated by disabling ((a) and (c)) and enabling ((b) and

(d)) volume preservation component. Red circles denote the handle positions.

The automatic weighting scheme of the volume preservation component is

sufficient to produce pleasing results. It also provides an easy interface for novice

CHAPTER 4. RESULTS AND DISCUSSION 64

users. However, this component can also be further extended to present an in-

terface to define manual weights. Explicit weighting can be beneficial in creating

complex and user-defined manipulations.

4.4 Usability Evaluation

In this section we analyze the usability of our system based on the subjective

reactions of the users. Before discussing these reactions, we have to note that

our system is based on a simple interface with only a few commands. Figure 4.8

provides an example snapshot. We have explored this interface and the general

features of our system by defining several different tasks. After completing these

tasks, users were asked to comment on the usability of our system and express

their impressions. The designed tasks are classified into three groups, which focus

on different components of our system.

Figure 4.8: User interface of our system

The first group of tasks concentrate on global transformations of models by

CHAPTER 4. RESULTS AND DISCUSSION 65

examining the usability of the transformation widget. Users were required trans-

late and rotate models to given positions and orientations. They were then ex-

pected to evaluate the capability of the widget in creating desired rotations and

translations, and the transition between these two kinds of transformations. The

general user feedback is that the individual usage of the transformation widget is

not complicated. If two kinds of transformations are examined separately, we can

say that applying translations is found to be easier than applying rotations. The

widget displays a translation vector showing the direction of movement whenever

the cursor is inside the translation region. The length of this vector varies pro-

portional to the translation speed. This vector is found very useful in translating

a model in a desired direction with a desired speed. On the other hand, users

need a short practice time to understand the working principle of the rotation

component. After producing rotations about different rotation axes with various

kinds of arcs, users feel more comfortable in predicting the outcome of their ac-

tions. Thus, desired orientations can be achieved in a shorter amount of time.

Finally, no serious problem has been reported about the transition between the

two regions of the widget. Switching between the two modes of transformations

is done with ease.

The second group of tasks investigate the mesh partitioning and the Laplacian

framework components of our system by asking the users to manipulate different

regions of a model. During these manipulations, users were especially requested

to concentrate on the automatic generation of the manipulation regions and the

consequences of using both hands at the same time. To begin with, in most

of the cases, automatically chosen manipulation regions are consistent with the

expectations of the users. In case these regions are smaller or larger than the

desired manipulation regions, users try another partitioning result until the most

suitable one is chosen. Therefore, we can conclude that the slider which presents

different partitioning results proves to be beneficial. As for the other concern of

this group of tasks, we can state that the users are comfortable in using both

hands during manipulation. However, we have to note that, they prefer to use

their thumbs and index fingers in each hand to manipulate more than a single

region at the same time. In general, other fingers are used only in situations where

CHAPTER 4. RESULTS AND DISCUSSION 66

handles close to each other are specified. The reason behind this preference is

that it is easier to synchronize the thumb and the index finger than any other

pair of fingers.

Finally, the last group of tasks ask the users to create simple animations

by applying global transformation and manipulation actions simultaneously. The

aim of this task is to have an overall evaluation of the system. The most important

observation of these tasks is that, users do not prefer to rotate and manipulate a

model at the same time. The reason is obvious, in fact. When a model is rotated,

the region, which contains the handle, is also relocated with the handle. As a

result, unintended manipulations occur. Therefore, users first rotate the model to

the desired orientation and then apply manipulation actions. Fortunately, this is

sufficient in most cases because no strong insistence in rotating and manipulating

a model together has been observed.

To better evaluate the style of translating a model during manipulation, users

are presented with two different options. In the first option, the transformation

widget stays constant while the model is being translated. Consequently, the

user holds her finger constant to keep on the translation. On the other hand,

the second option translates the widget with the model. Therefore, a user must

move her finger with the widget to keep on the current translation. Both of these

options have their own advantages and disadvantages. With the first option,

users can hold their finger in one hand still while using their other hand freely.

No synchronization is needed between the hands. However, if the users try to

give translation and manipulation commands with the same hand, the distance

between the fingers specifying each of the commands will increase as one finger

is kept still, while the other one moves with the model. When this distance

reaches a certain value, users will no longer be able to move their fingers. The

second option eliminates the distance problem, since the finger specifying the

translation command must be moved as well. Nevertheless, this solution brings up

the necessity to synchronize fingers used in different operations. Moving a handle

to desired locations with one finger and keeping the translation vector constant

with the other finger creates a handicap for many users. The synchronization

is established only after a certain amount of practice. In conclusion, it is found

CHAPTER 4. RESULTS AND DISCUSSION 67

easier to apply global transformation and manipulation commands with separate

hands for both options. Using separate hands eliminates both the distance and

the synchronization problems. However, no option is strongly preferred over the

other one.

On the whole, some general comments can be noted about our system. First

of all, users have a direct control over the selection and relocation of the han-

dles during manipulation actions. This feature makes our system easier to use

compared to other handle specification methods, such as silhouette sketching [23]

and stroke drawing [7]. Moreover, the results of the actions are immediately dis-

played on the screen, eliminating the need of predicting the output prior to giving

commands. Finally, users feel more comfortable using our system as they gain

practice and are able to produce more pleasing animations.

Before concluding the section, we provide snapshots of simple animations

created by our system in Figures 4.9 and 4.10. As a final note, the 3D models

used in these experiments are obtained from the web site of TurboSquid [37].

CHAPTER 4. RESULTS AND DISCUSSION 68

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Animation of a dragon model. Transformation widget is visible.

CHAPTER 4. RESULTS AND DISCUSSION 69

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Animation of a starfish model. Transformation widget is visible in

(b), (c), (d), and (e).

Chapter 5

Conclusions and Future Work

Creating simple computer animations for novice users is considered as a com-

plicated task. Some of the commercial products are designed especially for ex-

perienced artists and require a reasonable amount of knowledge about geometric

modeling and animation principles [3], [8]. Some other performance driven anima-

tion techniques such as motion capture require a complex and expensive setting

[18].

In this thesis, we present a work, which proposes a solution to the problem

of creation of simple animations by novice users. The approach is based on im-

proving the current shape editing techniques, namely the Laplacian framework.

We consider this framework as a suitable editing tool for our system, because

it enables to manipulate desired regions of a model while preserving the shape

features. In addition, it is sufficient to freely move a handle, which is a set of

single or more mesh vertices in the given region, to obtain this manipulation. The

most important disadvantage of this framework is the high computation time of

the operations involved at the beginning of a manipulation session. We try to

optimize these operations with the use of libraries that focus on linear algebra

operations [25] and sparse linear systems [36]. Another drawback of this frame-

work is the loss of volume observed as a result of the rotations involved during

manipulations. In order to create more realistic results, we enhance the Lapla-

cian framework to enable preservation of volume. We accomplish this feature by

70

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 71

adding a post-processing step, which updates mesh vertices to keep the volume

constant, after the Laplacian operations.

In our system, we apply Laplacian editing operations to automatically gener-

ated regions of a model simultaneously in order to create an illusion of movement.

These regions are obtained by decomposing the input model into meaningful

parts. The human visual system perceives objects as a collection of salient parts

and tends to move these parts in an animation. Therefore, by manipulating

meaningful parts of a model, we produce results close to the expectations of the

users. Additionally, we eliminate the need for explicit assignment of manipulation

regions.

Finally, our system is targeted for multi-touch screens, an emerging technology

in human-computer interaction. We make use of the multi-point feature of the

multi-touch screen to develop simple interaction styles to increase the usability

of our system. We obey direct manipulation principles in the design of these

interaction techniques. By so, we aim to create the feeling of manipulating objects

by hand.

Our current system provides expressive results, however it can be further

improved. One of the most important extensions is the further development of

the interaction methods. The widget we have designed to enable transformations

currently supports 3D rotations and translations in x and y coordinates. Another

component can be added to this widget to enable translations in the z direction

as well. We have completed a prototype design for this component. Our design

assumes that an additional rectangular component lies beside the original widget.

The middle of this rectangle corresponds to the value of z = 0. Therefore, if

the cursor inside this rectangle moves up, translation in -z direction is achieved.

Similarly, down cursor movements result in translations in +z direction. We

claim that, this additional component can be used with the thumb finger while

the index finger is active inside the widget circles. To further ease the usage, we

propose adjusting the orientation of the additional component according to the

index finger orientation. Figure 5.1 illustrates this design.

Another possible important improvement of our system is the redesign of the

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 72

Figure 5.1: Prototype design of the extended transformation widget. Orientation

of the z translation component is adjusted according to the orientation of the

index finger shown by an arrow inside the circles.

volume preservation component. Instead of adjusting volume as a post-process,

we suggest to enhance the minimization problem used in the Laplacian framework

to consider volume preservation as well. Such an enhancement will enable to

preserve volume using the Laplacian coordinates. Therefore, the problem of losing

surface details during the volume correction process can be prevented.

A final useful extension is the application of the traditional animation princi-

ples to our current system. We believe that, different effects, such as exaggera-

tion and stretch-and-squash, can be accomplished by adjusting the weights of the

constraints used in the Laplacian framework and the weights of the displacement

vectors used in volume preservation. We recommend to develop a heuristic to

assign automatic weights according to the choice of the animation effect desired.

More plausible results can be obtained as a result.

To conclude, we can say that we have gained hands on experience about a

variety of subjects by completing this work. Differential methods constitute an

important part of these subjects. These methods are commonly used in various

modeling operations, such as transferring details between two models and mixing

of these details, in addition to editing tasks. Therefore, our obtained knowledge

will also be beneficial in other applications we develop. Finally, working with a

multi-touch screen has been the most fascinating part of our system. Exploring

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 73

different features of this emerging technology and developing appropriate inter-

action techniques have been a valuable practice in human-computer interaction

applications.

Bibliography

[1] G. Antini, S. Berretti, and P. Del Bimbo, A.and Pala. 3d mesh partitioning

for retrieval by parts applications. Proceedings of the International Confer-

ence on Multimedia and Expo, pages 1210–1231, 2005.

[2] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. Mesh

segmentation - a comparative study. Proceedings of the IEEE International

Conference on Shape Modeling and Applications, pages 7–18, 2006.

[3] Autodesk. 3ds max, 2009. http://www.autodesk.com/3dsmax.

[4] H. Benko, A.D. Wilson, and P. Baudisch. Precise selection techniques for

multi-touch screens. Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems, pages 1263–1272, 2006.

[5] D.A. Bowman, E. Kruijff, LaViola J.J., and I. Poupyrev. 3D User Interfaces:

Theory and Practice. Addison-Wesley, 2005.

[6] M. Chen, S. Mountford, and A. Sellen. A study in interactive 3-d rotation

using 2-d control devices. Computer Graphics, 22(4):121–129, 1988.

[7] G.M. Draper and E.K. Egbert. A gestural interface to free-form deformation.

Proceedings of Graphics Interface, pages 113–120, 2003.

[8] Blender Foundation. blender.org, 2009.

http://www.blender.org/blenderorg/blenderfoundation.

[9] B. Fröhlich and J. Plate. The cubic mouse: A new device for three-

dimensional input. Proceedings of the ACM Conference on Human Factors

in Computing Systems, pages 526–531, 2000.

74

BIBLIOGRAPHY 75

[10] T. Grossman, R. Balakrishnan, and K. Singh. An interface for creating and

manipulating curves using a high degree-of-freedom curves input device. Pro-

ceedings of the ACM Conference on Human Factors in Computing Systems,

pages 185–192, 2003.

[11] M. Hachet, P. Guitton, and P. Reuter. The cat for efficient 2d and 3d inter-

action as an alternative to mouse adaptations. Proceedings of the ACM Sym-

posium on Virtual Reality Software and Technology, pages 205–212, 2003.

[12] G. Hirota, R. Maheshwari, and M.C Lin. Fast volume-preserving free form

deformation using multi-level optimization. Proceedings of the ACM Sympo-

sium on Solid Modeling and Applications, pages 234–245, 1999.

[13] S. Houde. Iterative design of an interface for easy 3-d direct manipulation.

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 135–142, 1992.

[14] T. Igarashi, T. Moscovish, and J.F. Hughes. As-rigid-as-possible shape ma-

nipulation. ACM Transactions on Computer Graphics, 24(3):1134–1141,

2004.

[15] Stantum Inc. Stantum:pioneer of multi-touch technologies, multi-touch de-

velopment kit, multi-touch salut, 2009. http://www.stantum.com.

[16] S. Katz, G. Leifman, and A. Tal. Mesh segmentation using feature point

and core extraction. The Visual Computer, pages 865–875, 2005.

[17] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering

and cuts. International Conference on Computer Graphics and Interactive

Techniques, pages 954–961, 2003.

[18] J. Lee, J. Chai, P.S.A. Reitsma, J.K. Hodgins, and N.S. Pollard. Interactive

control of avatars animated with human motion data. ACM Transactions

on Graphics, 21(3):491–500, 2002.

[19] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.P. Seidel.

Differential coordinates for interactive mesh editing. Proceedings of Shape

Modeling International, pages 181–190, 2004.

BIBLIOGRAPHY 76

[20] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. Linear rotation-

invariant coordinates for meshes. ACM Transactions on Computer Graphics,

24(3):479–487, 2005.

[21] Graeme McRae. Cubic formula: Cardano’s method of solving a dipressed

cubic, 2009. http://2000clicks.com/mathhelp/FactoringCubic1.htm.

[22] A. Nealen, T. Igrashi, O. Sorkine, and M. Alexa. Fibermesh: Designing

freeform surfaces with 3d curves. ACM Transactions on Graphics, pages

1142–1147, 2007.

[23] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. A sketch-based interface

for detail preserving mesh editing. ACM Transactions on Graphics, pages

1142–1147, 2004.

[24] R. Parent. Computer Animation: Algorithms and Techniques. Morgan Kauf-

mann Publishers, 2002.

[25] R. Pozo. Lapack++: Linear algebra package in c++, 1992.

http://math.nist.gov/lapack++/.

[26] Stanford Exploration Project. Givens rotations, 1997.

http://sepwww.stanford.edu.

[27] J. Rekimoto. Smartskin: an infrastructure for freehand manipulation on in-

teractive surfaces. Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems: Changing Our World, Changing Ourselves, pages

113–120, 2002.

[28] B. Shneiderman. The future of interactive systems and the emergence of

direct manipulation. Behavior and Information Technology, pages 237–256,

1982.

[29] K. Shoemake. Animating rotation with quaternion curves. ACM SIG-

GRAPH Computer Graphics, pages 245–254, 1985.

[30] K. Shoemake. Arcball: A user interface for specifying three-dimensional ori-

entation using a mouse. Proceedings of the Conference on Graphics Interface,

pages 151–156, 1992.

BIBLIOGRAPHY 77

[31] O. Sorkine. Differential representations for mesh processing. Computer

Graphics Forum, 25(4):789–807, 2006.

[32] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. Proceedings

of the Fifth Eurographics Symposium on Geometry Processing, pages 109–

116, 2007.

[33] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.P. Sei-

del. Laplacian surface editing. Proceedings of the Eurographics/ACM SIG-

GRAPH Symposium on Geometry Processing, pages 179–188, 2004.

[34] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral

approximation. Proceedings of the International Conference on Computer

Vision, pages 902–908, 1995.

[35] F. Thomas and O. Johnston. The Illusion of Life - Disney Animation. Walt

Disney Productions, 1981.

[36] S. Toledo. Taucs, a library of sparse linear solvers, year = 2003, note =.

[37] Inc Turbo Squid. 3d models, 3d modeling textures and plugins at turbosquid,

year = 2009, note =.

[38] W. von Funck, H. Theisel, and H.-P. Seidel. Volume preserving mesh skin-

ning. Proceedings of Vision Modeling Visualization, page to appear, 2008.

[39] Inc Wikimedia Foundation. Dijkstra’s algorithm: Wikipedia, the free ency-

lopedia, 2009. http://en.wikipedia.org/wiki/.

[40] R. Williams. The Animator’s Survival Kit: A Manual of Methods, Principles,

and Formulas for Classical, Computer, Games, Stop Motion, and Internet

Animators. Faber and Faber, 2002.

[41] M. Wu and R. Balakrsihnan. Multi-finger and whole hand gestural inter-

action techniques for multi-user tabletop displays. Proceedings of the ACM

symposium on User Interface Software and Technology, pages 193–202, 2003.

BIBLIOGRAPHY 78

[42] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.Y. Shum. Mesh editing

with poisson-based gradient field manipulation. International Conference on

Computer Graphics and Interactive Techniques, pages 644–651, 2004.

[43] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.Y. Shum.

Large mesh deformation using the volumetric graph laplacian. Proceedings

of ACM SIGGRAPH, pages 496–503, 2005.

