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1 Template Deformation

For a given template Tj and an element si, our goal is to compute the defor-
mation parameters, di

j , that define the instance of Tj that match si as closely
as possible. To achieve this goal, we first apply a similarity transformation to
Tj that aligns the bounding boxes of Tj and si. We axis-align all templates
in the pre-processing stage so that the y-axis corresponds to the up direction.
We compute correspondences between the axes of the element and template
bounding boxes by matching their up directions.

Once Tj and si are roughly aligned we setup an optimization to compute
di
j . The goal of this optimization is to compute the template parameters that

minimize the distance between Tj and si. In our evaluations, we define this
to be the point-to-point correspondence distance. Thus, we sample 3D points
both on Tj and si to produce the sample point sets Qj and Pi respectively. We
establish 3D correspondences between these point sets by selecting the closest
points and solve for di

j by minimizing the following energy:

Efit(Tj ,d
i
j , si) = c(di

j) =
∑

qj∈Qj

‖qj − pi‖2 +
∑

p′
i∈Pi

‖p′
i − q′

j‖2. (1)

The first term measures the distance from the template to the element where
qj and pi are corresponding points in Qj and Pi respectively. The second
term measures the symmetric distance where p′

i ∈ Pi and q′
j ∈ Qj denote the

correspondences. We solve this optimization iteratively, updating Qj and the
correspondences at each iteration. We use the Ipopt package [WB06] to solve
the non-linear optimization at each iteration.

i-Wires deformation model. When fitting a template Tj equipped with the
i-Wires deformation model to an element si, our goal is to align the dominant
linear features of Tj and si. Therefore, for the input MVS acquisition we perform
standard image-space edge detection on each individual image and apply multi-
view stereo matching on the 2D edges [BSZF99] to generate a set of 3D line
features. We then sample 3D points on the feature wires of Tj and the 3D line
segments falling inside the bounding box of si to generate the point sets Qj and
Pi respectively. In order to preserve the structural relations detected among
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the feature wires of Tj during deformation, we update Equation 1 by adding an
additional term:

Efit(Tj ,d
i
j , si) = c(di

j) + cW (di
j). (2)

cW (di
j) is used to preserve the equal length, planarity, orthogonality, and sym-

metry relations between the wires of Tj and is defined as in [GSMCO09].
Once the parameters of the wires of Tj are computed, we adopt a 3D vol-

umetric deformation approach to obtain the final geometry of the template.
Specifically, we construct a regular 3D deformation grid, Vg, for the template
model and sample corresponding points on the original and the updated wires of
the model. Using these correspondences as handle constraints, we solve for the
new width, height, and depth of each cell in Vg with respect to smoothness con-
straints on the size of the neighboring grid cells (see [KSSCO08] and [PWS12]).
Once the updated grid is computed, the geometry of the deformed template is
constructed by preserving the local coordinates of each vertex of the model with
respect to its enclosing grid cell.

Parametric deformation model. The parametric model we use to generate
curved columns acts an abstract template where each parametric column is
an instance of this template. We begin our analysis by first generating a set
of concrete column instances given the input elements. We cut each input
element along its up direction and fit circles to the resulting outline curves. We
generate helical structures in a RANSAC-like fashion by finding groups of circles
that are related by the same pitch and thus are possibly swept along the same
helix. We then evaluate different combinations of such helicals, i.e. different
number and different CSG operations, to generate candidate columns fitting
the element. Starting from this initial set of parametric columns, our coupled
analysis identifies the best fitting column instance for each element. Column
parameters are further optimized by coupling the parameters of the individual
helical structures of the column instances detected as similar.

2 Subspace Analysis

After performing template deformations, we construct a multi-layer graph M
where each individual graph layer Gj = (S,Ej ,Wj) encodes the deformation
parameters of the instances of template Tj fitting each element. We adopt the
subspace analysis approach of Dong et al. [DFVN14] to extract a set of con-
sistent relations among the elements. This approach first computes a subspace
representation Uj for each graph layer as the k− dimensional embedding of the
graph, i.e. the smallest k eigenvectors of the corresponding normalized graph
Laplacian Lj . In our experiments, we select k such that the gap between the
consecutive eigenvalues (ek+1 − ek) is maximized. The individual subspaces Uj

are then combined into a common representation U . This is achieved by solving
a minimization problem where intuitively U is desired to (i) be as close as pos-
sible to each Uj and (ii) preserve the vertex connectivity at each graph layer.
The solution U to this minimization problem is obtained as follows. First, a
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common graph Laplacian L =
∑

j Lj − α
∑

j UjU
T
j is computed where α (set

to 0.5 in our experiments) balances the tradeoff between the desired properties
of U . U is then defined as the smallest k eigenvectors of L.

3 Detailed Results

In the last part of the supplementary material, for each MVS dataset we provide
a selection of the input images, 2D edges detected in the images, and views of
the constructed 3D line features. For the scan dataset, we provide images of the
scene together with the views of the input scan. For each dataset, we provide
the element smoothness matrices computed in the first and final iterations of
our algorithm together with the detected element similarities. We also include
close-up views of the template instances matched to the elements. Finally, we
provide the template model set and the grouping used in our evaluations.
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We synthetically add noise to the input scan by uniformly disturbing each vertex in the range 
[-4d, 4d] where d is the average local sample spacing. Below we show the smoothness matrices
 computed in the �rst and �nal iterations of our algorithm for the same set of elements as on the 
previous page (the elements in the top �oor ).
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(Templates used for evaluation in Fig. 6b are shown indicated in orange.)
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