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Abstract
The physical and the digital world are becoming tightly connected as we see an increase in the
variety of 2D and 3D acquisition devices, e.g., smartphones, digital camera, scanners, commercial
depth sensors. The recent advances in the acquisition technologies facilitate the data capture
process and make it accessible for casual users. This tremendous increase in the digital content
comes with many application opportunities including medical applications, industrial simulations,
documentation of cultural artifacts, visual effects etc.

The success of these digital applications depends on two fundamental tasks. On the one hand,
our goal is to obtain an accurate and high-quality digital representation of the physical world. On
the other hand, performing high-level shape analysis, e.g. structure discovery in the underlying
content, is crucial. Both of these tasks are extremely challenging due to the large amount of
available digital content and the varying data quality of this content including noisy and partial
data measurements. Nonetheless, there exists a tight coupling between these two tasks: accurate
low-level data measurement makes it easier to perform shape analysis, whereas use of suitable
semantic priors provides opportunities to increase the accuracy of the digital data.

In this dissertation, we investigate the benefits of tackling the low-level data measurement
and high-level shape analysis tasks in a coupled manner for 3D reconstruction and modeling
purposes. We specifically focus on image-based reconstruction of urban areas where we exploit
the abundance of symmetry as the principal shape analysis tool. Use of symmetry and repetitions
are reinforced in architecture due to economic, functional, and aesthetic considerations. We
utilize these priors to simultaneously provide non-local coupling between geometric computations
and extract semantic information in urban data sets.

Concurrent to the advances in 3D geometry acquisition and analysis, we are experiencing a
revolution in digital manufacturing. With the advent of accessible 3D fabrication methods such
as 3D printing and laser cutting, we see a cyclic pipeline linking the physical and the digital
worlds. While we strive to create accurate digital replicas of real-world objects on one hand,
there is a growing user-base in demand of manufacturing the existing content on the other hand.
Thus, in the last part of this dissertation, we extend our shape understanding tools to the prob-
lem of designing and fabricating functional models. Each manufacturing device comes with
technology-specific limitations and thus imposes various constraints on the digital models that
can be fabricated. We demonstrate that, a good level of shape understanding is necessary to
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Abstract

optimize the digital content for fabrication.

Key words: shape analysis, 3D reconstruction, symmetry detection, computational design,
fabrication constraints
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Zusammenfassung
Die Grenze zwischen digitaler und physikalischer Welt verschwimmt zusehends, verursacht durch
die zunehmende Verbreitung von digitalen Aufnahmegeräten, die 2D (beispielsweise Smartphone
und Digitalkameras) sowie 3D (z.B. Laserscanner oder kommerzielle Tiefensensoren) Daten
verarbeiten können. Die jüngsten Fortschritte dieser Technologie vereinfachen den Datenerhe-
bungsprozess und ermöglichen deren Einsatz auch für unbedarfte Benutzer. Die Zunahme von
digitalen Inhalten führt zu unzähligen Anwendungsmöglichkeiten, beispielsweise in der Medi-
zin, bei industriellen Simulationen, der Dokumentation von Kulturgütern oder für visuelle Effekte.

Der Erfolg dieser digitalen Anwendungen ist von zwei grundlegenden Problemstellungen abhän-
gig. Einerseits ist unser Ziel eine exakte und qualitative hochwertige digitale Repräsentation der
physikalischen Welt. Andererseits ist es notwendig digitale Inhalte, ähnlich dem menschlichen
Verstand, auf einem abstrakten und allgemeinen Level zu verstehen. Diese beiden Aufgaben
stellen, unter anderem wegen der Vielzahl digitaler Inhalte als auch wegen der variierenden
Datenqualität dieser Inhalte, verursacht durch Rauschen oder partiell fehlende Daten, eine große
Herausfordern dar. Nichtsdestoweniger existiert eine enge Verbindung zwischen diesen beiden
Problemstellungen: eine exakte und hochwertige Datengrundlage erleichtert und begünstigt
das abstrakte Verstehen und Begreifen der digitalen Inhalte, wobei die Verwendung passender
semantischer a-priori Informationen (Priors) im Gegenzug die Genauigkeit der digitalen Daten
erhöht.

In dieser Dissertation untersuchen wir die Vorteile einer gemeinsamen Betrachtung von Da-
tenerhebung und abstraktem Verstehen des Inhaltes im Bereich der 3D Rekonstruktion und
Modellierung. Im Besonderen sind wir an bildbasierter Rekonstruktionsverfahren städtischer
Umgebungen unter Verwendung von Symmetrieinformationen als allgemeines Analysewerkzeug
interessiert. Die Verwendung von Symmetrie und Repetition bietet sich innerhalb der Architektur
aus Gründen der Wirtschaftlichkeit sowie aus funktionalen und ästhetischen Gründen an. Wir
verwenden diese Priors um gleichzeitig übergreifende Verknüpfung zwischen geometrischer
Berechnung und Extraktion semantischer Informationen in städtischen Datensätzen zu erreichen.

Neben den Fortschritten innerhalb der 3D Geometrieerzeugung und -analyse erleben wir mo-
mentan eine Revolution im Bereich der digitalen Fertigung. So ermöglichen 3D Druck und
Lasercutting eine cyclische Verbindung zwischen physikalischer und digitaler Repräsentation.
Während wir auf der einen Seite danach streben möglichst exakte Repliken von realen Objekten
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Zusammenfassung

zu schaffen, steht auf der anderen Seite der Bedarf nach einer physikalischen Repräsentation von
existierenden Inhalten. Daher erweitern wir das Anwendungsgebiet der entwickelten Werkzeuge
auf Design- und Herstellungsprobleme funktionaler Modelle. Jedes Herstellungsverfahren ist
mit verfahrensspezifischen Limitierungen verbunden und schränkt damit die Art der Modelle,
die tatsächlich physikalisch erzeugt werden können, ein. Wir zeigen, dass ein genaues Ver-
ständnis für die Art und Ausprägung eines Objektes notwendig ist, um digitale Inhalte für den
Herstellungsprozess zu optimieren.

Stichwörter: Formanalyse, 3D Rekonstruktion, Symmetrie Extraktion, Fabrikation
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Résumé
Les mondes physique et numérique deviennent étroitement liés depuis que nous observons une
augmentation de la variété des dispositifs d’acquisition de 2D et 3D (smartphones, appareils photo
numériques, scanners, capteurs de profondeur commerciaux). Les avancées récentes relatives aux
technologies d’acquisition facilitent le processus de saisie des données et les rendent accessibles
aux utilisateurs occasionnels. Cet accroissement considérable des contenus numériques ouvre
maintes opportunités incluant les applications médicales, les simulations industrielles, la docu-
mentation sur les artéfacts culturels, les effets spéciaux, etc.

Le succès de ces applications numériques dépend de deux fonctions fondamentales. D’une
part, notre objectif est d’obtenir une représentation précise et de haute qualité du monde physique.
D’autre part, produire une compréhension de haut niveau du contenu numérique proche de celle
l’être humain est crucial. Ces deux tâches sont extrêmement difficiles en raison de la large
quantité de contenus numériques disponibles et de la qualité variable de ces données à cause
notamment de les mesures bruyantes et partielles. Il existe néanmoins un couplage étroit de ces
deux tâches : la mesure précise des données de bas niveau permet de produire une compréhension
de haut niveau du contenu numérique quand l’utilisation d’antécédents sémantiques adéquats
fournit des opportunités d’accroître l’exactitude des données numériques.

Dans cette thèse, nous étudions les avantages de la mesures de données de bas niveau et la
compréhension de haut niveau des formes d’une manière couplée pour la reconstruction 3D et
la modélisation. Nous nous concentrons en particulier sur la reconstruction de zones urbaines à
partir d’images où nous exploitons l’abondance de symétrie comme outil principal d’analyse de
formes. L’utilisation de la symétrie et des répétitions est renforcée en architecture en raison de
considérations économiques, fonctionnelles et esthétiques. Nous utilisons ces antécédents pour
fournir simultanément des couplages non-locaux entre les calculs géométriques et les extractions
des informations sémantiques des ensembles de données urbaines.

Parallèlement aux progrès dans l’acquisition et l’analyse de la géométrie 3D, nous vivons une
révolution dans la fabrication numérique. Avec l’avènement des méthodes accessibles de fabrica-
tion 3D telles que l’impression 3D et le découpage laser, nous assistons à un cycle périodique
liant les mondes physique et numérique. Alors que nous nous efforçons d’un côté de créer des
répliques numériques précises d’objets réels, il y a d’un autre côté une demande croissante pour la
fabrication de contenus existants. Ainsi, dans la dernière partie de cette thèse, nous éetendons nos
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Résumé

outils de compréhension de formes au problème de la conception et la fabrication des modèles
fonctionnels. Chaque appareil de fabrication comporte des limitations technologiques spécifiques
et impose ainsi différentes contraintes sur les modèles numériques qui peuvent être fabriqués.
C’est ce que nous démontrons, un bon niveau de compréhension de formes est nécessaire à
l’optimisation du contenu digital pour la fabrication.

Mots clefs : analyse de formes, reconstruction 3D, détection de symétrie, les contraintes de
fabrication
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1 Introduction

The physical world is becoming more and more interconnected with the digital world as we
witness a tremendous increase in the variety of 2D and 3D acquisition devices, e.g., smartphones,
point-and-shoot cameras, scanners, and commercial depth sensors. The recent advances show a
clear improvement in the accuracy and the resolution of these sensing devices while making it
more convenient for casual users to acquire digital content. This ease of acquisition brings up
many application opportunities in scientific and commercial fields that rely on collection of large
and complex data sets. Common applications include mechanical prototyping, documentation of
cultural artifacts, design of medical implants, robotics, urban modeling, etc.

Often the success of these applications that center around 3D reconstruction depends on two fun-
damental tasks: accurate low-level data measurement and high-level shape analysis. Imagine
an urban planing scenario such as the renovation of an architecture site or design of an urban
area. Typically, users with different backgrounds like stakeholders, architects, and city planners
need to exchange ideas. Very often, these users do not share a common background and are not
familiar with each other’s conventions. In such cases, it is critical to present and discuss ideas
using an effective representation such as the digital replica of the physical site. On the one hand,
an accurate and high-quality 3D reconstruction of the area is necessary for careful planning,
prototyping, or running environmental simulations. On the other hand, automatic extraction of
semantic knowledge from the acquired digital content similar to a human being is crucial. For
example, explicit encoding of the elements of a building enable direct edits such as modification
or replacement of these elements while patterns detected in arrangements of the elements help to
easily propagate these edits.

The increase in the size of the available digital content places additional demands on the low-level
digitization and high-level shape analysis tasks to handle the resulting complexity. These tasks
become particularly challenging since large amounts of digital data often come with varying
quality including a significant amount of noisy and partial data measurements. Nonetheless,
accurate low-level data measurement makes it easier to provide a high-level analysis of the
acquired content, whereas use of suitable semantic priors provides opportunities to increase the
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Chapter 1. Introduction

reconstruction accuracy. Therefore, instead of tackling these tasks individually, exploiting the
tight coupling between them enables to overcome most of these challenges.

accurate 
digitization

high-level
shape analysis

interactive
applications

capturing the real-world

Figure 1.1: This dissertation investigates the coupling between the low-level digitization and
high-level shape analysis tasks for reconstructing the physical world. The acquired information is
beneficial for a variety of applications.

This dissertation investigates the benefits of tackling the tasks of digitization and shape analysis
in a coupled manner in the specific problem domain of urban reconstruction (see Figure 1.1). We
consider 3D modeling of urban spaces an important and challenging problem whose outcome
is beneficial for various applications centered around digital 3D cities including urban planning
and design, mapping and navigation, and content creation for entertainment. These applications
heavily depend on accurate 3D building models to enable tasks that require interaction with
street-level buildings and facades.

An important principle in our investigations is to explore the notion of symmetry. Generally
speaking, symmetry preserves certain properties of an object under some operation applied to
it [112]. In the context of geometry, we consider the geometric transformations, e.g. rotations,
translations, reflections, as the symmetry operations. In the physical world, we observe geometric
symmetries at various scales including the reflectional symmetry of the human body, rotational
symmetry of a starfish, or the regular pattern of an insect eye. This abundance of symmetry in
nature has inspired humans to incorporate symmetry in various fields including visual arts, music,
and architecture [72]. In architectural designs, symmetry has ben utilized due to its impact on
economical and functional considerations and aesthetic concerns (see Figure 1.2). Thus, detection
of symmetry in such data sets has been an important problem in geometry processing.

In our analysis, we consider symmetry as a means to provide non-local coupling between
geometric computations and to extract and create semantic information in urban data sets. By
consolidating information across multiple observations of the underlying geometry, we aim to
provide high-quality 3D models of urban spaces. In addition, we explore the use of symmetry as
a guiding principle to facilitate the development of novel interaction metaphors with the captured
real-world scenes.

While we focus on 3D reconstruction of architectural data sets, we believe that our results provide
useful insights for other disciplines that are concerned with the digitization and understanding
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Figure 1.2: Use of symmetry and repetitions are reinforced in architecture at multiple scales due
to economic, functional, and aesthetic considerations.

of large-scale geometric data sets. Concurrent to the efforts in 3D geometry acquisition and
analysis, we are experiencing a revolution in digital manufacturing. Recent advances in rapid
prototyping technologies, including 3D printers, laser cutters, and CNC machines, have created a
growing userbase in demand of tools that enable them to create digital content to be manufactured
by such devices. Such manufacturing technologies, however, often come with device-specific
limitations that impose additional requirements on the digital models that can be fabricated.
Thus, specialized digital geometry processing algorithms are needed to close this gap between
acquisition and production [11].

We present one of the early efforts in automating the process of designing and fabricating
functional models, specifically mechanical humanoid figures performing everyday actions like
walking and dancing. We demonstrate that a good geometric understanding of the digital content
is crucial to fulfill the requirements of such an automated system to create properly functioning
physical prototypes.

1.1 Objectives and Challenges

This dissertation investigates the fundamental question of how to accurately digitize the physical
world while providing a high-level shape analysis of the acquired digital data. In particular, we
are interested in exploring the coupling between the digitization and shape analysis tasks in the
context of 3D urban modeling. The shape analysis tasks we perform centers around structure
discovery, i.e. detection of symmetric and repeating building elements.

Having a variety of applications centered around 3D digital cities, reconstruction of urban spaces
has attracted a lot of attention from the research community. Chapter 2 provides an overview
of the different methods proposed in this domain. While different 3D acquisition possibilities
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exist, image-based modeling methods have become one of the most popular due to the simplicity
and economical advantages of the image acquisition process. This simplicity, however, comes
with stronger demands on the processing algorithms. Fundamentally, any algorithm that uses
triangulation to infer 3D information from images has to address the difficult and often ambiguous
correspondence problem, i.e. identify the point-pairs that represent the same world space location
between any image pair.

Advances in the camera technology and the processing algorithms have led to significant improve-
ments in the quality of 3D reconstructed models [102]. Despite this success, many challenges
arising from lighting variations, insufficient textures, or occlusions remain unsolved in establish-
ing robust correspondences across input images. Furthermore, most traditional methods use local
feature matching in combination with local smoothness priors [33] to produce 3D samples. Such
local processing can lead to high noise levels and a significant amount of outliers.

Our goal is to exploit the concept of symmetry, which is regularly used as an organizing principle
in urban planning and design, to overcome these shortcomings. Use of repeated structures is often
reinforced to ease the construction process and such repetitions provide multiple observations of
the same geometry.

Figure 1.3: Our goal is to integrate
structure-discovery into the 3D recon-
struction process to yield high-quality
3D models.

Our objective is to combine these observations to ob-
tain clean, precise, and high-quality 3D building mod-
els. In addition, we intent to use symmetry as a means
to extract semantic information since repeating struc-
tures are often composed of elements such as win-
dows on a facade (see Figure 1.3). This information
is particularly useful for applications that focus on
post-processing and editing of the acquired geometry.

While repetitions provide the means to consolidate
information about the underlying geometry, they also
come with the inherent ambiguity issue. The corre-
spondence problem becomes particularly challenging
in presence of repeated elements that give rise to mul-
tiple and ambiguous correspondences. Traditional
image-based methods that do not explicitly take sym-
metries into account suffer from large-scale ambigu-
ities and exhibit one of the following artifacts: (i) they
produce suboptimal reconstructions that are sparse
and noisy, or (ii) they generate apparently reasonable
3D output, but with an incorrect number of repeated
elements. We observe a cyclic dependency in the problem of 3D reconstruction with repeating
structures: stable symmetry detection requires reliable 3D information, while accurate recon-
struction requires stable symmetry detection to resolve ambiguities. Our goal is to break this
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dependency by injecting symmetry information early into the reconstruction process.

input images back-projected symmetry reconstructed 3D geometry + detected symmetries
with camera parameters

edited images

Figure 1.4: By injecting symmetry information early into the reconstruction process, our goal is
to compute the camera parameters of a set of input images and detect 2D/3D symmetry patterns
simultaneously. The symmetry information provides a novel link between the input images and
the 3D output to enable interesting interaction possibilities.

By explicitly detecting regularities in the input images, our aim is to reduce the search space
of possible geometric relations between image pairs and guide the correspondence search. By
formulating this problem as a coupled optimization, we also aspire to refine the detected sym-
metry relations and obtain a globally consistent 3D reconstruction with explicit encoding of the
regularities (see Figure 1.4). This is crucial to link the input images and the 3D scene which
enables several interactive editing applications.

Figure 1.5: Elements that exhibit variations of
a base geometry are common in ornate historic
buildings.

Exploiting the presence of exact repetitions of
the same geometry arranged in 1- or 2- dimen-
sional grids is particularly beneficial for the
reconstruction of most buildings we see in our
every-day lives. More complex architectural
data sets, such as ornate historic buildings,
on the other hand, also consist of elements
that exhibit interesting variations of the same
base geometry. For example, windows with
similar top arches but varying height or width
are common (see Figure 1.5). Detecting such
structural relations between the elements of
a building is a central goal of shape analysis.
Performing such an analysis in raw data mea-
surements such as image-based reconstruc-
tions, however, is a challenging task due to
noisy and partial data measurements. Our goal is to understand such patterns of deformation and
variation without making any prior assumption on the structure and the spatial arrangement of
these patterns. By exploring these structural similarities in a general sense, we aim to provide
high-level correspondences among the elements of a shape. These correspondences are useful for
non-local consolidation of the data, providing guidelines for fitting new geometry, and editing.
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While, we mainly focus on shape analysis and processing algorithms for the task of reconstructing
the physical world, in the last part of this dissertation, we extend our findings to the problem
of recreating the physical world from this acquired digital content. Development of sensing
technologies that measure the shape and motion of objects has created a growing interest in
creating physical replicas of both static and movable digital models. Many online services
such as Shapeways [99] and Ponoko [88] offer manufacturing facilities, such as 3D printing
and laser cutting, for casual users to manufacture the available digital content. However, due
to the underlying technology, different manufacturing techniques impose specific constraints
on the digital models that can be fabricated. For example, laser cutters are capable of cutting
only planar pieces. 3D printers often have limitations on the size of the models that can be
printed. Thus, a pre-segmentation is necessary when large models are desired to be printed.
This segmentation is required to ensure each printed segment can later be assembled together.
As a consequence, between acquisition and production, there is a need for a set of geometry
processing algorithms concerned with modifying and processing the acquired digital content to
satisfy these constraints [11]. Typical operations include shape simplification, filtering operations
for noise removal, and geometry analysis. Such operations often require advanced optimization
and processing techniques. Therefore, there is a need for tools that can automate this process and
make it accessible for casual users.

Figure 1.6: Commercial motion sensing input
devices such as the Microsoft Kinect enable direct
capturing of human motions.

We focus on automating the design and fab-
rication processes in the specific problem
domain of fabricating movable models. In
particular, our goal is to design and fabri-
cate mechanical humanoid figures that mimic
every-day actions such as walking and danc-
ing. Such animation sequences can be ac-
quired via motion-capture systems or com-
mercial motion sensing input devices such as
the Microsoft Kinect as shown in Figure 1.6.
Preparation of such acquired digital content
for fabrication becomes particularly challeng-
ing if the captured digital content consists
of noisy data measurements as in the case
of the Microsoft Kinect output. Our goal is
to overcome these challenges by providing
a high-level understanding of the input ani-
mation sequences by detecting patterns in the
target motions that are desired to be realized.
Such patterns enable the design of generic
mechanical components with configurable pa-
rameters that can be automatically adjusted to approximate given target motions. Furthermore,
we aim to consider ease-of-fabrication and physical validity during the design of such mechanical
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components to ensure the creation of working physical prototypes.

1.2 Contributions

The principal contributions of this dissertation are summarized below.

• We present an image-based 3D reconstruction framework for urban scenes that integrates
structure discovery and geometry consolidation. The key aspect of this framework is a
coupled optimization that combines low-level geometric feature extraction in the form of
line features with symmetry detection.

• We develop an algorithm to extract repeated elements in images of buildings while simulta-
neously computing the camera parameters corresponding to each image. Explicit detection
of repetitions globally disambiguates the correspondence search across the images.

• We present an algorithm for detecting structured variations among the elements of a
building. Such variations reveal which elements are exactly repeated, or how elements can
be derived as structured variations from a common base element.

• We introduce an automated approach for designing and fabricating functional models,
specifically mechanical figures that approximate a given target motion.

1.3 Organization

The remainder of this dissertation is organized as follows:

Chapter 2, 3D Urban Modeling Revisited. This chapter provides an extensive overview of
state-of-the art techniques proposed to enable fast and accurate 3D reconstruction of urban spaces.
We also introduce the key steps of a traditional image-based reconstruction pipeline, underlining
the specific challenges encountered at each step. Finally, we provide a brief introduction on the
notion of symmetry and how it can be utilized to overcome these challenges.

Chapter 3, Factored Acquisition of Buildings. This chapter covers an image-based 3D recon-
struction framework for piecewise-planar buildings containing symmetric parts. Given a set
of input images, together with the corresponding camera parameters, this framework utilizes
geometric priors in the form of line and plane features to capture local spatial coherence in the
data. We exploit large scale symmetries among the elements of the building, e.g. window frames,
to provide structural priors that explore non-local coherence. Our reconstructions provide a
factored representation where the individual building elements are nicely encoded. We provide
evaluations performed on challenging data sets, both synthetic and real.

Chapter 4, Symmetry and Structure-from-Motion. Repeated structures are ubiquitous in
buildings leading to ambiguity in establishing correspondences across sets of unordered images.
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This chapter presents a coupled approach to resolve such ambiguities by explicit detection of
the repeating structures. We show that this approach simultaneously computes accurate camera
parameters corresponding to each image and recovers the repetition pattern both in 2D and 3D. We
evaluate the robustness of the proposed scheme on a variety of examples and provide comparisons
with other structure-from-motion methods. We also show that the recovered repetitions patterns
enable a range of novel image editing operations that maintain consistency across the images.

Chapter 5, Understanding Structured Variations. Many architectural data sets not only
contain elements that are exact replicas of the same geometry, but also consist of elements that
exhibit variations of a base geometry, e.g. windows with similar arch but varying height. In this
chapter, we investigate the problem of understanding such variations in the context of multi-view
stereo reconstructions of ornate historic buildings. Utilizing a database of template models, each
equipped with a deformation model, we detect patterns across element instances of a building by
matching them to templates and extracting similarities in the resulting deformation modes.

Chapter 6, Designing Functional Models. In this chapter, we introduce an automated system
that takes a motion sequence of a humanoid character and generates the design of a mechanical
figure that mimics the input motion. The generated designs consist of parts that can be easily
fabricated or obtained. A central goal of our approach is to observe patterns typically occurring in
human motions to provide a high-level understanding of the target motions. This understanding
is useful both to guide the design process and identify the motion types that are better suitable for
our system.

Chapter 7, Conclusion and Future Directions. We provide a summary of the dissertation with
an emphasis on the take-home messages and suggest future research directions.
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2 3D Urban Modeling Revisited

With the advances in the acquisition technology, we see an increasing interest in digitizing objects
and scenes. 3D acquisition devices, such as the hand-held scanners or LIDAR scanners, enable
to capture physical objects ranging from specific human body parts to large cities. The wide
applicability of the collected data in various fields (e.g. industrial design, prototyping, prosthetics,
entertainment industry) has triggered the development of advanced reconstruction and processing
algorithms.

Urban reconstruction is one such field that is still under active research due to its wide spread
domain (see Figure 2.1). Digital mapping and navigation systems, such as Google Earth and
Microsoft Bing Maps, require 2D or 3D building models. 3D reconstruction of urban areas
provide useful interaction metaphors for urban planning and design. Several movies and games
rely on 3D digital cities. Virtual urban worlds are also useful for applications including emergency
planning and virtual touristic tours. The variety of these potential applications has attracted a
significant amount of attention from the researchers. In this chapter, we provide an overview
of the various methods proposed for fast and accurate reconstruction of 3D buildings with a
particular focus on image-based modeling techniques. We further describe the main steps of a
traditional image-based reconstruction pipeline, underline the specific challenges, and outline
how we plan to overcome these challenges. Please note that some of the methods we review are
general-purpose and thus can be applicable for other problem domains as well.

2.1 Overview of Approaches

The modeling of urban spaces has been performed using a variety of different strategies (see
Figure 2.2). Procedural modeling is one of these approaches which has been mainly utilized
for fast generation of complex urban structures from a set of parameters and rules. In one of
the early efforts, Wonka et al. [114] use split grammars and an attribute matching system to
synthesize buildings with a large variety of different styles. Müller et al. [75] also use the idea
of splitting to analyze single images of facades. They combine auto-correlation based analysis
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Figure 2.1: Urban reconstruction has a wide spread application domain including urban design,
emergency planning and entertainment industry.

of rectified images with shape grammars to generate rules and extract their parameters. In a
more recent effort, Kelly and Wonka [50] demonstrate an interactive approach for generating
buildings from architectural footprints using procedural extrusions. Even though procedural rules
provide an efficient way to create high quality detailed models, they are not useful for direct
model acquisition.

To overcome this limitation, inverse procedural modeling has recently become a new and growing
area. Here, the focus is to discover parameterized grammar rules and the corresponding parame-
ters that can generate a given specific target example. In an early effort, Aliaga et al. [3] present a
system to extract a repertoire of grammars from a set of images with user guidance and use this
information to quickly generate modifications of the architectural structures. Bokeloh et al. [10]
explore partial symmetries in a given model to generate rules that can be used to describe similar
models. Given a large set of rules, Talton et al. [105] present an approach to select the rules and
the parameter settings that can generate output resembling a high level description of desired
productions. A common challenge for these methods is that the expressive power of procedural
modeling makes the inverse problem extremely difficult. Thus, obtaining suitable generative
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2.1. Overview of Approaches

3D Urban
Modeling

Procedural
Modeling

LIDAR-based
modeling

image-based
modeling

multi-view
stereo

interactive
modeling

split grammars, Wonka et al.[114]

inverse procedural modeling, 
Bokeloh et al.[10]

scan consolidation, Zheng et al.[123]

combination of scans & images, 
Li et al.[58]

single-view modeling
Jiang et al.[46] general MVS,

Furukawa et al.[33]

Figure 2.2: The modeling of urban spaces has been performed using a variety of different
approaches. (Images courtesy of corresponding authors.)

procedures to capture target shapes still remains as an ambitious problem.

Direct acquisition of urban spaces, on the other hand, is becoming popular due to the variety
of the input data sources. An important portion of the proposed 3D reconstruction methods
use LIDAR scans. These scans are collected by measuring distance by illuminating a target
region with a laser and analyzing the reflected light. This process creates 3D point clouds with
significant accuracy, however the challenges in the practical acquisition process often lead to
incomplete coverage. Therefore several automatic and interactive methods have been proposed
for post-processing of such data.

Zhou and Neumann [126] present an automatic algorithm for creating building models from
LIDAR scans. This algorithm first performs vegetation detection and then estimates the principle
directions of the building roof patches. This information is used to fit parametric models to the
data. In a similar effort, Pu and Vosselman [89] present an automatic method for reconstruction
of building facade models from terrestrial laser scanning data by fitting polygonal models. The
method first detects planar features in the input point clouds corresponding to wall, door, or
window regions. A concave or convex polygonal model is then generated from these features.
In a recent effort, Vanegas and colleagues [108] propose an approach for extracting volume
descriptions from 3D point clouds based on the Manhattan World assumption, i.e. the presence
of three mutually orthogonal directions in the scene.
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In addition to fully automatic methods, several algorithms that utilize user interaction have been
proposed for processing of scan data. Nan et al. [77] propose an interactive method where the
users roughly define simple building blocks, called smart boxes, over the 3D point samples.
The algorithm then snaps these boxes properly to the data by accounting both for data fitting
and inter-box similarity. In a similar data consolidation framework, Zheng et al. [123] exploit
large-scale repetitions to denoise the input data and complete missing parts. These repetitions are
detected with the help of the user.

There are a multitude of urban reconstruction methods that combine LIDAR scans with images.
Liu and Stamos [61] present a system that registers 2D images with 3D point clouds. By matching
linear features in the images and the point clouds, the method aims to robustly register the camera
parameters of the images to the 3D data. More recently, Li et al. [58] present an interactive system
for combining information from images and LIDAR scans. They create a layered representation
of input buildings which enables more robust detection of repeating structures that are used to
enhance 3D data.

Although scanning devices are frequently used by land surveying offices, they are still not
available for mass markets due to economical and practical reasons. On the other hand, the
advances in the camera technology and the simplicity of the acquisition process has recently
made images one of the obvious input sources. It is estimated that tens of billions of photos
are taken each year, many of which depict urban sites [76]. As a result, image-based modeling
methods has recently become one of the most popular 3D acquisition techniques. In the next
section, we provide an overview of different approaches proposed using images as input.

2.2 Image-based Modeling

An important category of image-based methods rely on interactive modeling using single or
multiple images as input. A seminal work in the field of multi-view interactive modeling is the
system presented by Debevec et al. [23]. This system uses manually marked lines in photographs
to fit parameterized polyhedral shapes to represent the input model. In a similar system, Liebowitz
et al. [59] explore additional constraints such as parallelism and orthogonality of line features. In
a more recent effort, Chen et al. [18] interpret freehand sketches to create texture-mapped 2.5D
building models using a database of geometric models to fill in plausible details. Jiang et al. [46]
present a single-view modeling system where the user annotates architectural elements of the
input building and the symmetry information is used to recover the 3D information.

For interactive modeling systems, often there is a trade-off between quality and scalability.
While more user interaction results in high-quality models enriched with semantic information,
such approaches do not scale well with large data sets. Therefore, it is critical to automatically
extract 3D information from a set of images in order to develop semi-automatic or fully-automatic
modeling approaches. To perform this task, we need to understand the process of image formation,
the formation of a 2D representation of a 3D-world. This understanding enables us to to deduce
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the 3D structure of what appears in the images.

2.2.1 Camera Model

The 2D representation of a 3D world is a projection process where we lose one dimension. The
standard way of modeling this process is to use a pinhole camera model. A ray from a fixed
point in space, representing the center of projection, is drawn to a point in 3D world. This ray
will intersect a specific plane, the image plane. This intersection point corresponds to the image
of the 3D point. This process is shown in Figure 2.3a, where a point in space with coordinates
X = (X ,Y , Z )T is mapped to a point x = (x, y)T on the image plane. Assuming, the camera
centered at point C is looking towards the positive Z-axis, called the principle axis, and the
Y-axis denotes the up-direction, the image plane is placed perpendicular to the principal axis. The
distance from the image plane to the projection center C is called the focal length and denoted
as f . The point where the principal axis intersects the image plane is called the principal point
and is depicted as p = (px , py )T . By similarity of triangles, we see that the 3D point (X ,Y , Z )T is
mapped to the 2D point (x, y) = ( f X /Z , f Y /Z )T .

C
p

x
X

p

f px

py

a) pinhole camera geometry b) image coordinate system

Figure 2.3: Pinhole camera geometry. The camera center, C, is placed at the origin and the
image plane is placed in front of the camera center. The principal point, p, is the point where the
principal axis meets the image plane.

If we represent the world and the image points in homogeneous coordinates, we can represent the
central projection as a linear mapping as follows:

[
f X f Y Z

]T =

 f 0 0 0

0 f 0 0

0 0 1 0

[
X Y Z 1

]T
. (2.1)
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The matrix in this expression is called the camera projection matrix and often represented as P .
This expression assumes that the origin of coordinates in the image plane is at the principal point.
If this is not the case (see Figure 2.3b), the projection of the 3D point X corresponds to the 2D
point x = ( f X /Z +px , f Y /Z +py )T . Thus, the camera projection matrix can be updated as:

P =

 f 0 px 0

0 f py 0

0 0 1 0

 . (2.2)

We can represent this matrix as P = K [I | 0]. K is called the camera calibration matrix represent-
ing the internal parameters of the camera, specifically the focal length and the principal point. In
practice, there is the additional possibility of having non-square image pixels, and in rare cases
the x- and y-axis of the camera sensor may not be orthogonal. Thus additional parameters can
be added to the intrinsic matrix to represent these properties. For the purpose of simplicity, we
assume this is not the case.

C
p O

R,t

camera coordinate frame world coordinate frame

Figure 2.4: The transformation between the camera and the world coordinate frames.

Until now, we have assumed the camera to be placed at the origin of a Euclidean coordinate
system and thus the 3D point X is in fact represented in this camera coordinate frame. In practice,
the center of projection and the 3D points are expressed with respect to a different coordinate
frame, namely the world coordinate frame. The camera and the world coordinate frames are
related by a rotation R and a translation t (see Figure 2.4). Thus, the 3D point X represented in
world coordinates can be expressed as Xcam = RX+ t in camera coordinates:

Xcam =
[

R t

0 1

][
X Y Z 1

]T
. (2.3)

Substituting this in the previous projection equation, we obtain x = K [R | t]X. Thus, the camera
projection matrix is represented as P = K [R | t]. The parameters R and t which relate the
orientation and the position of the camera to the world coordinate frame are called the external
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camera parameters. A 3D world point X can be expressed in camera coordinates using the position
of the center of the camera C in world coordinates as well. Specifically, Xcam = R(X−C). Thus
the camera projection matrix can also be written as P = K [R | −RC].

2.2.2 Epipolar Geometry

Extracting 3D information from a set of input images requires to understand the relation between
a pair of views of the same scene. Suppose a 3D point X is viewed in two views as x and x’. As
shown in Figure 2.5, the points (X,x,x′) and the camera centers form a plane p. Assume, we only
know the image point x and wish to find x′. We know that the unknown point x′ lies on the plane
p and thus lies on the intersection of this plane with the image plane. This line is the epipolar
line corresponding to x. Thus, the corresponding point to x on the second image can be restricted
to this line if the camera parameters for both images are known.

X

x x’

 epipolar 
plane (p)

C C’e

epipolar
   line (l)

Figure 2.5: The geometric relations of point correspondences between a pair of images.

The epipolar line is the projection of the ray from the first camera center through x onto the
second image. Assuming the camera projection matrix corresponding to the first image is P , this
ray is obtained by solving PX = x. From the definition of P = K [R | t] we obtain that the direction
of this ray is RT K −1. Thus, one-parameter family of solutions for this ray can be written as:

X(λ) =λRT K −1x+C, (2.4)

where C is the center of the first camera, i.e. PC = 0, and the ray is parameterized by λ. Assuming
the camera projection matrix of the second image is P ′ = K ′[R ′ | t′], any point on this ray projects
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as follows:

P ′(λRT K −1x+C) =λK ′R ′RT K −1x+K ′(R ′C+ t′) (2.5)

The last term K ′(R ′C+ t′) is the projection of the first camera center to the second image and can
be denoted as e. To further simplify the notation we can define A = K ′R ′RT K −1 where A is an
invertible 3−by −3 matrix. Therefore, for a given point x in the first image, the corresponding
point in the second image lies on the line through e and Ax. This epipolar line is represented
as l = [e]×Ax = F x, where [e]× represents the cross product with e. The matrix F = [e]×A

representing the epipolar gometry is called the fundamental matrix.

We know that if points x and x′ correspond, then x′ lies on the epipolar line l = F x. Being on this
line, x′ satisfies the following equality, x′T l = 0. Thus, x′T F x = 0. This is an important relation
enabling to characterize the fundamental matrix only in terms of corresponding image points.
Each pair of corresponding points yields one homogenous linear equation in the entries of the
fundamental matrix. Thus, knowing at least eight correspondences between a pair of images
enables to recover the fundamental matrix up to a non-zero scalar factor (see [45] for details).

2.2.3 Recovering Camera Parameters

In the previous section, we have seen that the fundamental matrix relating two images can be
recovered from a set of image correspondences. An interesting reformulation of this analysis
results in the following problem: Given a pair of images of a static scene with a set of image
correspondences, how can we determine the position and orientation of each camera and the 3D
world coordinate of each point for every pair of correspondences? We will start our discussion by
first analyzing this problem in a two-view setup and then extend our findings to multiple views.

Given a 3D point X and two images with camera projection matrices P1 and P2, X projects to the
images as follows:

λ1x1 = PX = K1R1(X−C1)

λ2x2 = PX = K2R2(X−C2), (2.6)

where x1 = [x1 y11]T and x2 = [x2 y21]T represent the image projection points and λ1 and λ2

represent the projective depth of X with respect to the first and second cameras. Given a set of
correspondences (x1,x2), the goal is to determine the camera intrinsic (i.e. Ki ) and extrinsic (i.e.
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Ri ,Ci ) parameters and the 3D location of the correspondences (i.e. X j ).

Without loss of generality, we may introduce a variable X′ to replace the expression X′ = R1(X−C1)

which represents a Euclidean transformation. This means, X = RT
1 X′ +C1. Substituting the

expressions for X and X′ into the projection equations (Equation 2.6), we obtain:

λ1x1 = K1X′

λ2x2 = K2R2RT
1 X′+K2R2(C1 −C2), (2.7)

The term K2R2(C1 −C2) =λe2 e2 in fact represents the projection of the first camera in the second
image where as λe2 is the projective depth of C1 in the second camera. With a sufficient number
of correspondences, we can compute the fundamental matrix F of the image pair up to a scale
factor. Thus we can compute e2 as it is the right null vector of F (i.e. F e2 = 0).

We can introduce an additional variable X̄ = 1
pe2

X′ = 1
pe2

R1(X−C1). This variable enables to
represent λ1 and λ2 relative to λe2 and we obtain:

λ̄1x1 = K1X̄

λ̄2x2 = K2R2RT
1 X̄+e2, (2.8)

where λ̄1 = λ1
λe2

and λ̄2 = λ2
λe2

. We finally introduce the variable X̃ = K1X̄ and thus have X̄ = K −1
1 X̃.

This gives us,

λ̄1x1 = X̃

λ̄2x2 = K2R2RT
1 K −1

1 X̃+e2. (2.9)

Interestingly, we arrive at the expression A = K2R2RT
1 K −1

1 introduced in the previous section to
define the fundamental matrix, i.e. F = [e2]×A. Unfortunately, the knowledge about F does not
uniquely identify A creating a reconstruction ambiguity. This ambiguity results from the fact that
the fundamental matrix is not changed by a projective transformation in 3D. Assume H is a matrix
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representing such a projective transformation. Since, P1X = (P1H)H−1X and P2X = (P2H)H−1X,
the 3D point X and H−1X correspond to the same image points for the camera pairs (P1,P2) and
(P1H ,P2H) respectively. Thus, fundamental matrices corresponding to the camera pairs (P1,P2)

and (P1H ,P2H) are the same. Therefore, without any additional information, correspondences
between an image pair determine a pair of cameras only up to a projective transformation. We
refer the readers to the book by Hartley and Zisserman [45] for a more detailed discussion about
the projective ambiguity and the additional information required to resolve this ambiguity.

In practice, a standard method to resolve this ambiguity is to obtain information about the intrinsic
camera parameters. This information is often extracted from the Exif tags of the images and
include the focal length, the image size, and the camera model.

If the intrinsic camera matrices K1 and K2 are known, the fundamental matrix takes a specialized
form. Given the projection of a 3D point to an image, x = PX = K [R|t ]X, and the intrinsic camera
matrix K , we can obtain the point x̄ = K −1x = [R|t ]X. x̄ is said to be expressed in normalized
image coordinates. Another interpretation of the point x̄ is the projection of X to a camera with
projection matrix P = I [R|t ], where the identity matrix represents the intrinsic camera parameters.
If we consider a pair of such cameras with the projection matrices P1 = [I |0] and P2 = [R|t],
the previous definition of the fundamental matrix (Equation 2.5) converges to F = [t]×R, and is
defined as the essential matrix E . In other words, the essential matrix depends on the relative
orientation and position change between the two cameras.

Similar to the fundamental matrix, the essential matrix relates the correspondences between an
image pair expressed in normalized image coordinates x̄′T E x̄ = 0. Thus, it is possible to compute
the essential matrix from a set of image correspondences.

Once the essential matrix is known, it is possible to estimate the relative orientation and position
of the cameras of an image pair. Assuming the first camera matrix is P1 = [I |0], the goal is to
estimate the second camera matrix P2. From the definition of the essential matrix, E = [t]×R,
it is possible to decompose E into the product of a skew-symmetric and a rotation matrix as
E = SR. The skew-symmetric matrix S has two non-zero and equal singular values and a third
singular value equal to zero [38]. The multiplication with the rotation matrix R does not change
the singular values, thus E also has two singular values which are equal and one which is zero.
Given the singular value decomposition (SVD) of E ,E =U DV T , we can write the diagonal matrix
D = di ag (s, s,0) where s denotes the nonzero singular value of E .

Introducing the orthogonal matrix W and the skew-symmetric matrix Z ,

W =

0 −1 0

1 0 0

0 0 1

 and Z =

 0 1 0

−1 0 0

0 0 1

 (2.10)
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A B A BAB AB

Figure 2.6: The four possible solutions for the camera position and orientations recovered from
their essential matrix. Only in the first configuration, the reconstructed point is in front of both
cameras.

S can be written as S =U ZU T up to scale. We can show that this is true since ST =U Z T U T =
−U T ZU = −S, a property of skew-symmetric matrices. Since the expressions E = SR and
E =U DV T should be equal, we obtain R:

E =U DV T = SR = (U ZU T )(U X V T ) =U (Z X )V T . (2.11)

Thus we have R =U X V T . Z X must be equal to the diagonal matrix D and since X should be a
rotation matrix, we obtain that X =W or X =W T . This factorization enables us to write S = [t]×
and since St = 0. In other words, U ZU T t = 0 and thus we can define t as the third column of U :
t = u3. However, we cannot determine the sign of t.

Thus, given the essential matrix E corresponding to the camera projection matrices P1 = [I |0]

and P2 = [R|t], there are four possible choices for P2:

P2 = [UW V T |u3] or P2 = [UW V T |−u3] or P2 = [UW T V T |u3] or P2 = [UW T V T |−u3]. (2.12)

The possible solutions for t denote that the direction of translation between the cameras is
reversed. The possible solutions for R denote a rotation of 180◦ about the line joining the camera
centers (see Figure 2.6). However, in only one of these configurations the reconstructed point
will be in front of both of the cameras. Thus, testing with a single point is sufficient to determine
the correct configuration.
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2.2.4 Triangulation

x x’

C C’

X

Figure 2.7: In the ideal case, the rays projected
through corresponding points intersect resulting
in a 3D point (shown in blue). In practice, these
rays do not necessarily intersect (shown in red).

Once the camera projection matrices are re-
covered for input views, a point in 3D space
can be computed given its matching correspon-
dences. As seen in the inset figure, in case the
corresponding points satisfy the epipolar con-
straints, the rays passing through the camera
centers and the image points (x,x′) will inter-
sect and thus the 3D intersection point can be
determined in a straightforward way. In real-
ity, however, due to inaccurate measurements,
the corresponding points may not satisfy the
epipolar constraints. As a result, the projected
rays do not necessarily intersect. In this case,
the goal is to find the 3D point minimizing
an error measure relating the 3D point to the
correspondences. One choice for such an error

measure is the distance from the 3D point to the projected rays. It turns out that, this error
measure results in a 3D point which is the midpoint of the shortest line segment joining the
projection rays.

2.2.5 Structure-from-Motion

In the previous sections, we have described how correspondences between an image pair can
be used to obtain information about the relative position and orientation of the cameras. Es-
tablishing reliable correspondences is a critical requirement to perform this task robustly. An
important invention that has advanced this task into a hot research topic has been the robust
feature-point detection algorithms (e.g. SIFT [64]). These algorithms have enabled efficient
detection and matching of feature points across multiple views of a scene. Once established, such
correspondences are used to register multiple images by extending the analysis provided in the
previous section to multiple images. This process is called structure-from-motion (SfM) since 3D
information about the scene is obtained by recovering the motion of the cameras.

A typical SfM pipeline starts by detecting and matching a sparse set of feature points across the
given images. Such correspondences are used to obtain initial estimates for the camera parameters.
By triangulating the detected correspondences, 3D points representing these correspondences
are also computed. In practice, image measurements are noisy and thus the projection equations
(i.e. Equation 2.6) are not satisfied exactly. Therefore, the goal is to refine the initial estimates of
the camera projection matrices P i and 3D point locations Xj that minimize the image distances
between the reprojected points and the initially detected feature points xi

j (j-th feature point as
seen by the i-th camera):
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Figure 2.8: Photo Tourism system developed by Snavely et al. [103] is a seminal work in using
large image collections from the Internet in a SfM pipeline. (Image courtesy of Snavely et al.)

min
P i ,Xj

∑‖P i Xj −xi
j‖ (2.13)

This minimization problem is known as bundle adjustment as it involves adjusting the rays
between the camera centers and the set of 3D points. This is a nonlinear optimization problem for
which advanced solvers exist ([63, 116]). Often, SfM is performed iteratively, starting with an
initial pair of images and adding new images to the system one by one. After several images are
added, bundle adjustment is performed to refine the current estimates of the camera parameters
and the 3D points.

A multitude of SfM algorithms have been developed in recent years. An important category of
such algorithms operate on ordered image sequences such as video ([35, 87]). The known order
of the images provides strong cues to determine candidate images that should be matched. The
growing ability of large numbers of images of touristic places from the Internet has inspired
researchers to develop SfM methods for large image collections ([103, 37, 1]). These methods
utilize the SfM information for exploring and navigating through the captured environment. In
a recent effort, Agarwal et al. [2] present a framework that reconstructs architectural places
from over hundred thousand images. The problem of matching images is formulated as a graph
problem where images that only depict the same object are connected. Object level information
is obtained through multi-view clustering of scene objects [31].

Other methods have been proposed that focus on increasing the accuracy of the SfM pipeline.
Govindu [40] uses the redundancy in the pairwise image relations to average multiple observations
to produce a globally consistent motion estimation and later [41] randomly samples spanning trees
from a graph encoding the image relations to prune out mismatches. Martinec and Pajdla [67]
incrementally remove high-residual matches to increase robustness. Klopschitz et al. [54] propose
an incremental framework that favors subsets of images with highest local connectivity.
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SfM can be performed using other type of correspondences such as line features [95]. Micusik et
al. [69] use rectangular structures in two-view matching as an alternative to feature points. These
types of features are especially suitable for urban environments.

2.2.6 Multi-view Stereo

A SfM pipeline recovers the camera parameters of a set of input images together with a 3D
representation of the scene. However, since only a sparse set of feature points are used to generate
3D samples, the resulting reconstructions are sparse and do not contain solid geometry. On the
other hand, having recovered the camera projection matrices of the images, it is possible to match
and triangulate any image pixel resulting in dense reconstructions.

Many dense reconstruction methods, called multi-view stereo (MVS) methods, use multiple
images as input. Several successful MVS algorithms have been developed in recent years [98].
One common approach is to perform dense matching between pairs of images and generate a
depth map for each image that encodes the projective depth of the matched points. The resulting
depth maps are then combined in a process called depth map fusion. Several strategies have been
proposed on how to fuse multiple depth maps together [36, 37, 29]. A different approach is based
on matching feature points representing small patches on the surface of the target object. Such
recovered surface patches are then used to propagate information and perform a denser matching
across the input images [33].

Most general purpose MVS algorithms suffer from high noise levels along flat surfaces due to
independent matching of points. Use of certain priors have been proposed in the context of
urban reconstruction to overcome this limitation. One such prior is the assumption that most
objects in the scene consist of piecewise planar elements. Micusik et al. [74] employ a super-
pixel segmentation approach where each super pixel is labeled with a candidate plane. Based
on the even stronger assumption that all planes are axis-aligned (Manhattan-world), Furukawa
et al. [30] propose a method to generate depth maps for each input image based on matching
each pixel to a candidate plane having one of the dominant plane orientations. The candidate
planes are generated from an initial sparse point cloud. This method has later been extended
to model building interiors as well [32]. Recently, Wan et al. [111] proposed a framework
to reconstruct piecewise-planar buildings that incorporates constraints based on the relations
between the facades of a building.

In addition to dense reconstruction methods, another common approach to obtain solid geometry
from sparse SfM reconstructions is to explore user interaction. To illustrate, Sinha et al. [101]
present an interactive system to generate textured piecewise-planar 3D building models. The
2D outline sketches provided on the input images are combined with the initial 3D information
provided by SfM in an initial step. Similarly, Xiao et al. [120] use the output of SfM to decompose
a building facade using horizontal and vertical splitting lines. Each resulting rectilinear structure
is then assigned a depth.
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2.2.7 Challenges

3D reconstruction of geometric models from a set of images is an easy, flexible, and economic
method. We have reviewed a multitude of such methods in the previous section. Recent advances
in the camera technology have lead to significant improvements in the quality of the reconstructed
models. Despite this success, various challenges still remain unsolved in the acquisition and
reconstruction of clean and precise 3D models.

     illumination change            re�ections      textureless regions            occlusions         degrading resolution     illumination change            re�ections      textureless regions     illumination change            re�ections      textureless regions            occlusions         degrading resolution

Figure 2.9: Several factors such as variation in illumination across images, reflective or textureless
surfaces, large occlusions, and degrading resolution for upper floors of buildings make the
correspondence problem very challenging.

Establishing reliable correspondences between the input images is a key step for both recovering
the camera parameters relating a set of input images and computing dense reconstructions.
The correspondence problem, however, is a difficult and often ambiguous problem. Several
practical factors make this problem even more challenging (see Figure 2.9). For example, large
illumination changes across the input images makes it difficult to robustly match feature points.
Reflective surfaces contain a significant amount of outlier features coming from the reflections of
the surrounding elements. Large textureless surfaces such as walls of a building avoid detection
of reliable feature points. Street-level images of buildings often contain large occlusions such as
trees and suffer from degradation of resolution for the upper floors of the building. All of these
factors avoid establishing robust correspondences and thus lead to high noise levels and missing
data in both sparse and dense reconstructions. These artifacts become especially visible when the
output reconstructions are viewed to reveal the direction of the projective rays for the 3D points
towards the camera centers as seen in Figure 2.10. This comes as no surprise since lifting a 2D
image point to 3D is simply the process of estimating the depth of the point along its projective
ray and thus wrong correspondences result in wrong depth estimations along this ray.

General image-based reconstruction methods, such as MVS reconstructions, often produce dense
point clouds or polygonal meshes. A multitude of geometry processing algorithms have been
proposed for manipulating both types of representations [11, 82]. On the downside, however,
such low level representations do not capture any higher knowledge of the input scene. A
representation limited to low-level geometric primitives, such as points and triangles, makes it
difficult to interact with the underlying geometry. Architectural data sets, on the other hand, are
very rich in structural and semantic relations. Alongside the dominant plane and line features,
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   input images                                                                  MVS reconstruction (PMVS)

Figure 2.10: Even though MVS methods such as PMVS [33] output impressive results, they still
suffer from high noise levels, specially along the direction of projective rays.

they often exhibit symmetric relations among their individual elements such as windows, columns,
and arches etc. (see Figure 2.11). Use of repeating structures is reinforced to ease construction
and provide aesthetics. Therefore, it is extremely important to explore such relations to enable a
better understanding and processing of the captured scenes. Thus, finding symmetries in acquired
geometric data is an important problem in geometry processing.

Symmetry is a general concept in mathematics that preserves certain properties of an object under
some predefined operation [112]. The group theory formalizes this notion of invariance [92]. In
the context of geometry, a symmetry relation is defined for a subset M of a shape S if there exists
a transformation T (e.g. translation, rotation, reflection) that leave M invariant under the action
of the transformation, i.e. M = T (M). In case of regular repetitions, a transformation T produces
replicated copies of M , i.e. T (M),T 2(M), ...,T n(M).

Figure 2.11: Dominant repetitions in urban data sets and provide important structural priors to
augment the reconstruction process.

There has been a significant amount of research effort to detect symmetries and regular patterns in
both 2D and 3D data sets [62, 72]. The proposed methods for symmetry detection in 3D models
share a common pipeline at an abstract level. Often, processing begins with feature selection

24



2.2. Image-based Modeling

to restrict the computations to the relevant geometric features of the data set. Then, candidate
transformations mapping subsets of selected features are generated. Finally, the local observations
from these candidate transformations are accumulated to extract symmetries at larger scales.
Among the main approaches for 3D symmetry detection, we can list the transformation space
voting schemes of Mitra et al. [71] and Pauly at al. [84], the graph based approach of Bokeloh et
al. [9], and the symmetry-factored encoding of Lipman et al. [60].

Once detected, numerous applications benefit from the extracted symmetry information. 3D
reconstruction and analysis of architectural data sets are among such applications. In architectural
data sets, each replicated copy of an element provides multiple observations of the same geometric
piece. Combining these observations in a reconstruction framework can tremendously improve
the reconstruction quality. Symmetry also plays a crucial role in creating semantic information of
the underlying geometry. Most of us see a set of windows arranged in a grid-like structure when
we look at a typical building facade. Explicit detection of such knowledge enables to develop
intuitive interaction metaphors to perform editing tasks both in the image and the model space.

Due to these numerous benefits, we have witnessed several efforts in the last few years in bringing
symmetry into the 3D reconstruction pipeline. Wu et al. [119] demonstrate that repetitive
structures can be used for dense reconstruction from a single image by directly enforcing depth
consistency between these structures. Similarly, Jiang et al. [46] exploit symmetry to enable
interactive modeling from single images. Zhang et al. [123] consolidate given LIDAR scans of
buildings by harnessing repetitions.

A key component of the algorithms we propose, in contrast to related work, is that instead of
exploring symmetry priors as a post-processing tool to consolidate initial 3D reconstructions,
we handle symmetry detection and reconstruction tasks in a coupled manner. The necessity of a
coupled approach is due to the cyclic dependency between these two tasks. Compared to scan
data, i.e. LIDAR scans, image-based reconstruction methods often produce more noisy and
partial data measurements. We desire to find reliable symmetries to reduce noise and fill holes in
these reconstructions. On the other hand, reliable symmetry detection often requires clean and
complete data. A coupled approach breaks this cyclic dependency by simultaneously detecting
symmetries and reconstructing 3D geometry. We investigate the benefits of this coupled analysis
and reconstruction strategy through at each stage of the image-based reconstruction pipeline.
We demonstrate that the coupling enables reliable detection of symmetries while increasing the
reconstruction quality.

A common practice in the algorithms we will present is to exploit both input images and inter-
mediate 3D reconstructions as complementary data sources. While images are better suited for
capturing high resolution details of the underlying geometry they lack depth information. Inter-
mediate 3D reconstructions, on the other hand, play a crucial role in accumulating observations
across multiple images. Our algorithms focus on combining the advantages of each type of data
source into a unified framework.
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A typical image based 3D reconstruction framework consists of two main phases as explained
in the previous chapter. Once the camera parameters relating the input images are computed in
the structure-from-motion (SfM) step, dense image correspondences are triangulated to generate
dense reconstructions as shown in Figure 3.1. Typically, such correspondences are obtained
by local feature or window-based matching algorithms. Such local processing fails to obtain
reliable correspondences under challenging conditions (e.g. reflections, occlusions, change in
illumination) and leads to high noise-levels.

3D image-based reconstruction pipeline

input images structure-from-motion (SfM) dense reconstruction

Figure 3.1: In a typical image-based 3D reconstruction pipeline, the structure-from-motion step
is followed by a dense reconstruction of the captured scene.

Structural priors, such as symmetries, when available as in the case of urban scenes, enable to
overcome some of these challenges in image-based 3D reconstruction and improve the output
quality. A potential solution is to first extract structural information from the given SfM or dense
reconstructions and then utilize this information to regularize the output. Such a decoupled
approach, however, can fail since the low-quality 3D geometry makes robust structure detection
difficult. Therefore, we face a cyclic dependency: to remove noise and outliers and fill holes,
we desire to find reliable symmetries; yet to robustly estimate symmetries, we need clean and
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complete datasets. Our goal is to avoid this dependency by integrating the reconstruction and
structure detection tasks into a common framework and explore the benefits of structural priors in
each stage of the 3D reconstruction pipeline. We start our discussion by focusing on the dense
reconstruction stage and turn our focus to the SfM stage in the next chapter.

Given a set of input images of a building together with their camera parameters, our goal is
to extract and explore structural information to produce high-quality 3D models. We make an
important distinction between two types of structural information: (i) geometric primitives such
as lines and planes enable to capture small and medium scale spatial coherence in the data, (ii)
translational repetitions provide reconstruction priors that exploit non-local coherence. Both
of these priors explicitly capture the dominant symmetries of the acquired building. Line and
plane features exploit continuous symmetries, i.e. they contain infinitely many partial symmetries
with a continuum of transformations. Repetitive elements, on the other hand, model discrete
symmetries.

We recall that symmetry priors are neither given a priori nor explored as a post-processing tool.
Instead, our goal is to directly learn them during the reconstruction process. We achieve this goal
by simultaneously operating on the input images and the intermediate 3D reconstructions. We
formulate a combined reconstruction-detection algorithm that iteratively propagates geometric
and structural information to reinforce symmetries and 3D sample locations as will be described
next.

3.1 Overview

input 
images

2D edge 
detection

3D line 
reconstruction

plane �tting
& segmentation

repetition detection
& optimization

output 
reconstruction

Figure 3.2: We propose a reconstruction pipeline where we explore structural priors at two levels:
while line and plane features exploit continuous symmetries, repetitive elements model discrete
symmetries.

We propose an image-based dense reconstruction pipeline for architectural datasets that exploits
continuous symmetries in the form of lines and planes and discrete symmetries in the form of
repeating elements (see Figure 3.2) [16]. Given a set of registered input images of a building, we
start by performing image-space edge detection on each individual image. These linear features
will be used as the basis for planar feature extraction and discrete repetition detection. However,
not all the detected 2D edges correspond to relevant 3D line features of the geometry, they contain

28



3.2. Algorithm Details

many outliers arising due to shadows, occlusions, and reflections (see Figure 3.4). A critical step
in our framework is to generate a 3D line feature set by matching and triangulating these 2D
edges across multiple images. This step acts as a filter to remove outlier edge features as we
aggressively prune out potential mismatching edges. Yet we retain sufficiently many correct 3D
lines to create a set of candidate 3D planes that are used to generate intermediate piecewise-planar
3D reconstructions. We segment the input images into planar regions represented by these 3D
planes and combine these segments to texture the planes. This helps to perform the discrete
symmetry detection directly on the planes instead of the individual images as the planes act as
proxies to link the images. Symmetry detection involves accurately extracting the contours of the
repeating elements, such as the window frames, and computing the symmetry transform relating
these elements. The resulting factored symmetric parts still lie on the corresponding planes and
lack depth variations. However, the factored representation enables easy interaction possibilities
such as extruding or retracting the elements based on user specified depth offsets.

3.2 Algorithm Details

We will next describe each step of the proposed reconstruction pipeline in more detail. The input
to the pipeline is a set of input images I = {I1, . . . , In} and their camera parameters (computed
with the Bundler framework [103]). The output is a piecewise-planar 3D model of the captured
building with a factored representation of the detected repeating elements.

3.2.1 3D Line Reconstruction

A typical building has dominant line features that both reveal the contours of the individual
elements, such as window frames, and the intersection of planar regions corresponding to each
facade of the building. Therefore, we start our reconstruction process by extracting these linear
features. We first detect edge features in each of the input images Ii by using the standard
Canny edge detection method to identify the image pixels where an edge passes. Such pixels are
later linked into line segments until junction points are reached (see the open-source EdgeLink
function1). This gives us a collection of 2D edges L 2(Ii ) for each input image.

As stated previously, the 2D edge collection consists of many outlier features due to reflections,
occlusions, and shadows. We use 3D line reconstruction to prune out such outliers as edges are
matched across multiple images. Assume we have an edge ek detected in image Ii and would
like to find its matching edge in image I j as seen in Figure 3.3. The two endpoints of the edge ek

define two epipolar lines in image I j . The region defined by these epipolar lines identifies the
candidate matching edges for ek since the correct match should intersect this region. To find the
correct matching edge, we compute a similarity score for each candidate and pick the edge with
the highest similarity as the match. To compute the similarity score between the edge ek and a
candidate matching edge em , we uniformly sample ek . For each sample point, we compute the

1http://www.csse.uwa.edu.au/ pk/research/matlabfns/LineSegments/edgelink.m
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ek

em

Ii Ij

Figure 3.3: Given an edge ek in image Ii , its matching edge in image I j falls inside the region
defined by the epipolar lines (shown in orange) corresponding to the endpoints of ek . For each
potential match, a similarity score is computed by comparing small patches (shown in gray) along
the matching sample points on ek and em .

intersection point between em and the epipolar line in image I j corresponding to the sample, if
exists. Then, we define small image-patches (7−by −7 windows) centered around the sample
point and this intersection point and compute the normalized cross correlation (NCC) score
between the resulting patches. The similarity score between the two line segments is defined to
be the average NCC score over all such patches.

ek em

L

Ci Cj

Once a set of matching edges are identified
across the images, the intersection of the
planes passing through these edges and the
corresponding camera centers define a 3D line.
The inset figure shows this in case of two
matching edges. In practice, however, the
planes may not intersect exactly and we are
looking for the 3D line that minimizes the dis-
tance to each of the planes. We define this
line with a direction and a point, (d,x). Let us
assume each of the matching edges define a

plane with normal ni and a point oi. We select the 3D point x as the point that minimizes the
total distance to each of the planes:

min
x

∑
(ni

T (x−oi)
2. (3.1)

Taking the derivative of this expression with respect to x and equating to zero shows that x is the
solution to the system Ax−b = 0 where A =∑

nini
T and b =∑

nini
T oi.

Ideally, we want the direction d of the line to be perpendicular to the plane normals ni. In other
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words we want to minimize the following energy:

min
d

∑
(ni

T d)2 = dT Ad. (3.2)

Given the SVD decomposition of A, A =U DV T =U DU T (since AT = A), d that minimizes the
above sum is the last column of U corresponding to the smallest singular value of A.

Figure 3.4: Edges detected directly on images often contain outliers from reflections, shadows,
occluding elements etc. (middle). We employ matching and triangulation at the edge level to
prune out such outliers (right).

During 3D line reconstruction, we aggressively prune out mismatching edges. Specifically, we
consider a pair of edges to be matching only if they have a high similarity score (we use a
threshold NCC score of 0.7) and generate a 3D line if we collect matching edges in at least 3
images. This aggressive matching acts as a filter to prune out most of the outlier edges and gives
us a sparse but more reliable 3D line feature set L3 as shown in Figure 3.4. We aim to recover the
information missed at this step via detected symmetries in the subsequent steps.

3.2.2 Piecewise-Planar Model Generation

At a coarse level, buildings can often be considered as piecewise-planar where each facade is
represented with a plane. In order to obtain this coarse intermediate representation, we generate
a set of candidate planes, P , to fit the input geometry using the reconstructed 3D line features.
Specifically, we randomly pick a pair of 3D lines li (v1,v2) and l j (v3,v4) represented with their
endpoints and test if they are coplanar as follows:

(
v1 +v3

2
− v2 +v4

2
)T (v1 −v3)× (v2 −v4)

‖(v1 −v3)× (v2 −v4)‖ ≈ 0, (3.3)
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i.e., the diagonals of the quadrilateral (v1,v2,v3,v4) intersect (we also test for the ordering
v4,v3). If the lines are coplanar, we compute the corresponding plane normal and the offset,
n = (v1 −v2)× (v3 −v4)/‖(v1 −v2)× (v3 −v4)‖, d =−nT v1 and detect the 3D lines that are inliers
for this plane. If the plane has a sufficient amount of inliers (at least 5% of the 3D lines), we add
it to the candidate plane set P and discard the inlier 3D lines from subsequent planarity tests.

Once a candidate plane set P is generated, our goal is to fit these planes to the input geometry.
We perform this task by segmenting each input image Ii into planar regions to compute the actual
boundaries of the candidate planes. In other words, our goal is to label each pixel of Ii with the
most likely plane in P . We formulate this labeling problem by introducing two terms for each
pixel p ∈ Ii :

(i) Data term: The data term is used to measure how well a plane P | fits a pixel pk . Obviously,
assigning a plane to a pixel defines its 3D position as the intersection of the plane with the ray
from the camera center and passing through the pixel. An important observation we make is that
the initial 3D line reconstruction helps to distinguish between the pixels for which robust depth
estimates can be made. Specifically, pixels that do not lie on the projection of a 3D line are more
likely to be found in regions where stereo matching fails, such as reflective surfaces. In order to
avoid such pixels from voting for non-robust data terms, we assign a fixed data cost to labeling
such a pixel:

Ed at a(pk ,P j ) = e0,∀P j ∈P , if pk ∉ l , ∀l ∈L 3→2. (3.4)

For any remaining pixel that lies on the projection of a 3D line, it is straightforward to compute
the inconsistency of assigning that pixel to a certain plane. For any such pixel pk ∈ l for some
l ∈L 3→2, we can deduce its 3D position, p′

k , from the corresponding 3D line. For each candidate
plane label P j , we project this 3D point sample to P j and project it back to the input image
to generate a 2D coordinate p ′′

k . We define the cost of labeling pk with the plane P j based on
d(pk , p ′′

k ), the Euclidean distance between pk and p ′′
k . If d(pk , p ′′

k ) is greater than a threshold
distance r (1 % of the maximum image dimension), we consider the plane assignment to be
inconsistent with the known 3D position and set a high data cost:

Ed at a(pk ,P j ) = e1.0, if d(pk , p ′′
k ) > r. (3.5)

If d(pk , p ′′
k ) ≤ r on the other hand, we define a multi-view consistency score similar to Sinha

et al. [100]. To be specific, we project the 3D point p′
k to neighboring views and compute the

average NCC matching score, s, of the local windows centered around pk and the projection
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pixels in neighboring views. We set the data cost based on this average matching score, s:

Ed at a(pk ,P j ) = e−s , if d(pk , p ′′
k ) ≤ r. (3.6)

pk
pl

C

Pi

Pj Esmooth(pk,pl,Pi, Pj)

(ii) Smoothness Term: The smoothness term is defined to enforce
consistent plane labeling for neighboring pixels as they are likely to
be found on same planes. We expect abrupt changes in plane labeling
only for pixels that are near intersections of plane pairs from P . Thus,
we identify the 3D line features that are near plane intersections. For
any pair of neighboring pixels (pk , pl ) that lie on two sides of the
projection of such a 3D line (to handle rasterization artifacts, we
work with a small approximation margin of 30 pixels), we set the
smoothness cost to 0. For any remaining neighboring pixel pairs
(pk , pl ) and the candidate plane labels (P i ,P j ), the smoothness cost
is defined as follows. We cast a ray from the camera center passing
through the midpoint of the pixels and compute the intersection of this ray with each of the planes
P i and P j . As shown in the inset figure, the smoothness cost Esmooth(pk , pl ,P i ,P j ) is defined
as the depth difference between the resulting intersection points along the projected ray.

We combine the data and the smoothness terms and solve the pixel-plane labeling problem as
a standard Markov Random Field (MRF) formulation [55]. Once solved, we obtain a plane
assignment for each pixel in each image. However, the segment boundaries obtained may contain
noise in regions where depth estimates cannot be made reliably and lack sufficient 3D lines. In
order to extract accurate edges across noisy segment boundaries, we use the intersection lines of
the neighboring planes in the segmented images (see Figure 4.1). At this stage, if necessary the
user can manually make corrections on wrong segment boundaries. These corrections are made
by sketching rough strokes on the images which are then snapped to the 2D edges to form the
final image segmentation. This new boundary is propagated across the images by obtaining the
3D position of the boundary using the 3D plane assignments.

Once the input images are segmented into planar regions, we generate textures for each 3D
plane using these regions. To do so, we first extract the boundaries of a plane P j in 3D by
projecting all the pixels in the input images that have been assigned to P j . We assume there
exists a dominant up direction and require the user to mark an edge with this orientation in any of
the images. We compute the up direction in 3D by projecting this edge to its corresponding 3D
plane (We note that computing the dominant up direction from the vertical vanishing point is also
a possibility [118]). We then define a 2D grid on each plane P j that is oriented to be aligned
with this up direction. We can consider this grid to represent the rectified texture image of the
plane so the resolution of the grid is selected based on the desired texture resolution. In order to
compute the color of each of the cell in this texture image, we project the corresponding 3D cell
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Figure 3.5: We use an MRF-based plane labeling method to segment the input images. The
segmentation is cleaned using the intersection lines of neighboring planes. User input resolves
regions of insufficient feature lines.

point to every input image it is visible in and simply select the color value from the image that
has the least foreshortening factor, i.e. the absolute value of the dot product between the normal
of the plane and the image viewing direction is closer to 1. This simple filtering based on the
foreshortening factors enables to select the pixel colors from a few input images consistently.
However, more advanced texturing methods ([101]) can also be used.

3.2.3 Discrete Symmetry Extraction

Once the 3D planes P are fitted to the input data by computing their boundaries and textures,
we are ready to explore the presence of discrete symmetries. Since the input images are already
linked to the 3D planes, we perform the symmetry detection directly on the planes. The rectified
texture of the planes eliminates the perspective problem during symmetry detection. Since in
most building facades, we observe translational symmetry of elements (e.g. a grid of window
frames), we restrict the following discussion to detection of repeating elements that are regularly
spaced.
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     user-guided 
contour detection

Wu et al.

Symmetry detection involves both detecting the
base element that is repeating and the transforma-
tion relating such repetitions. However, there is
often an ambiguity when automatically choosing
the repeating base element and its relevant scale.
As a human being, on the other hand, when we see
a typical building facade we perceive a row of re-
peating windows. In other words, we tend to assign
semantics to the repeating elements. Even though,
it is straightforward for the user to quickly scribble
the desired base element, it is highly probable for
fully automatic methods ([118, 46]) to perform this
selection randomly (see the inset figure). Thus, we
use a few user-annotated rough strokes denoting
elements of interest to search for similar elements
across the (rectified) plane images.

Standard image-based similarity measures focusing on pixel intensities often become unreliable
in case of reflective or textureless surfaces. To overcome this challenge, we propose to perform
image-level matching using a combination of two attributes: (i) normalized cross correlation
(NCC) to compare the local image patches based on the user-marked region as a template,
and (ii) the extracted edges to compare the gradient maps. As stated before, since the 3D line
reconstruction helps to filter out noisy and outlier line features and yields a more reliable feature
set, as an initialization we use the edges obtained by projecting the 3D lines onto the rectified
plane images. Let {l t

i } be the lines from the user strokes that define a template and let L ′ = l ′j
denote all the lines containing the edge segments of the projected 3D lines. For each l t ∈ l t

i , we
select all lines l ∈L ′ with similar orientation, i.e. the angle between the two line directions is less
than 5-10 degrees, and di st (l , l t ) < ε. In this expression, di st (l , l t ) denotes the average distance
of the endpoints of l to the line l t and ε is a suitable threshold (e.g. 30 pixels). We then project
the selected lines onto {l t

i } and measure the percentage of the line lengths in {l t
i } covered by the

projected feature lines. This percentage measure gives us a line compatibility score. Finally, we
compute the similarity score as a weighted combination of line compatibility and (absolute) NCC
scores in the range [0.0,1.0]. A match is accepted if this final score is above a threshold (e.g 0.8).

In man-made objects, especially in building facades, regularity is predominant not only across
element-pairs but also across their mutual arrangement – typically in the form of 1D and 2D
grid-like arrangements. This is not surprising since architectural guidelines give strong preference
to such grid-structures both for aesthetic and economic considerations [27]. Having detected
the repeating elements on the rectified plane textures, our goal is to estimate the vertical and
horizontal transformations relating the repetitions. We first get initial estimates of the grid
generating transformations by ordering the elements with respect to their horizontal (and vertical)
positions and then look for the dominant horizontal (and vertical) transformations between the
subsequent elements.
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Symmetry refinement: Once we detect the repeating elements and get an initial estimate of
the transformations relating them, for any plane, we obtain a collection of lines defining the
contours of the elements that are linked by a transformation T . Without loss of generality, assume
the set of lines {l1, l2, . . .} denote the corresponding part of the contours across the elements, i.e.
li ≈ T i−1(l1). We represent the lines in the normal-intercept form as li = {p|nt

i p+di = 0}. At
this stage, both the line parameters {(ni ,di )} and the estimated transform generator T are often
imprecise and our goal is to improve these initial estimates. In other words, we look for a base
line parameter l ′1 = (n,d) and a coupling symmetry transform that best explains the observed data.
Without loss of generality, in the following we assume we have a set of elements arranged in a
1D grid.

Translational symmetry encodes the line offset o such that any other line is represented as
l ′i = (n,d + (i −1)o). Let any of the original lines li have end points p1

i and p2
i . Extracting the

best line parameters along with the coupling symmetry transform, then, accounts to minimizing

E(n,d ,o) =∑
i

wi ((nT p1
i +d + (i −1)o)2 + (nT p2

i +d + (i −1)o)2, (3.7)

with the side constraint ‖n‖ = 1 and wi = ‖p1
i −p1

i ‖ represents a weighting between the lines
based on their length. This weight helps to diminish the effect of very short noisy line segments.
We solve this optimization problem in a two-step iterative approach to find the line parameters
(n,d) and the translational offset o. Specifically, we alternate between the computation of the
transform parameter o and the line parameters (n,d) using a least-squares and an eigen-value
formulation respectively. Once converged (typically in 2 to 5 iterations), we recompute the set
of close lines to the optimized template strokes and repeat the entire optimization procedure
k = 3 times (see Figure 3.6). The analysis is similar in case of a 2D translational grid where we
optimize for both the horizontal and vertical transformations. We emphasize that this process is
effectively performing symmetrization [70] in the space of lines.

Structure completion: So far, we have used the projected 3D line edges for structure discovery
as these edges are considered to be more reliable features compared to the original edges. On
the other hand, the 3D line feature set is much sparser due to the aggressive pruning of the
mismatching edges. This sparsity leads to missing of certain grid elements to be detected.
However, the refined symmetry information helps to identify the outlier edges and thus we can
make use of all the remaining 2D edges.

Let L 2 denote the set of image-level edges that fall into any 3D plane. Assuming the detected
regularity pattern is under a 1D or 2D grid structure, we propagate the detected grid structures
and also test in regions of missing elements, this time using the edges from L 2 instead of the
projected 3D line edges. After, any missing element is detected, we perform the simultaneous line
and transformation optimization using all the repeating elements to further refine the symmetry
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Figure 3.6: Symmetry refinement is performed on the initially detected repetitions to initialize the
line and the transformation parameters for grid fitting. After the missing elements are detected
using the refined symmetry information, the optimization procedure is repeated to get the final
grid alignment. This procedure consists of an inner loop of successive iterations of line and
transformation optimization and an outer loop of updating the template strokes and reselecting
the close edges.
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information as shown in Figure 3.6.

3.2.4 Procedural Depth Refinement

At the end of the discrete symmetry extraction step, we have a set of elements with respective
repeating patterns on each of the 3D planes. Each element is encoded with its contour lines.
This explicit encoding of the elements provides a factored model making subsequent image- or
model-space editing operations easy and intuitive.

In practice, detected element patterns typically are offset surfaces from their embedding planes.
Hence, we require to capture depth offsets for such extrusions to produce a 3D model. This depth
information can be recovered automatically as follows. For each element, we can perform a 1D
depth search in an offset range [−σ,σ] along the direction of the normal of its embedding plane.
Specifically, we discretize this search space and at every sample, we move the contour lines of the
elements to the specified depth, project it back to the original images Ii and compare the projected
edges with the original 2D edges in this image. The correct depth offset will result in the highest
similarity between the projected and the original edges. In case of insufficient image resolution
or subtle depth changes, however, this automatic method fails to recover the correct depth of the
elements. However, the factored representation enables the user to manually prescribe a depth
assignment for a single element that can be propagated to all the other symmetrically coupled
elements (see Figure 3.7).

3.3 Evaluation

We evaluate the proposed reconstruction framework on a variety of challenging real and synthetic
scenarios such as non-Lambertian surfaces and abrupt changes in lighting. We provide a collection
of results in Figure 3.8 and provide statistics about these results in Table 3.1. We now summarize
our main findings below.

Synthetic Evaluation: We perform evaluations on the synthetic data sets to measure the accuracy

no depth window extrusion

Figure 3.7: User-guided depth refinement based on the extracted symmetric elements helps to
recover shallow depth features. We show recovered geometry with and without texture.
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Figure 3.8: For each example, we show the optimized repetition patterns with different colors
indicating separate structures. The red planes shown in the final reconstructions have been added
with user assistance due to lack of stable line features. Building 4 and table examples have highly
reflective surfaces.

39



Chapter 3. Factored Acquisition of Buildings
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Figure 3.9: We perform synthetic evaluations to measure the accuracy of our approach.

of the symmetry-based optimization step in recovering the correct boundaries of the repeating
elements (see Figure 3.9). Specifically, we render images of a synthetic module and use these
images as input for our approach. We perform a comparison between the ground truth model

Building 1 Building 2 Building 3 Building 4 Building 5 Table Synthetic
#Ni 25 26 13 9 27 13 24
res 5.7 6.2 7.6 6.2 5.0 5.7 3.0
Ne 2600 1200 2000 2400 1500 750 3400
Nl 2891 1570 457 1128 1822 173 3763
Np 2 3 2 6 1 7 5
N ′

p 4 0 2 0 0 0 0
N ′

r 1 2 1 4 3 2 1
Nr 102 80 300 156 57 8 300
Tl 55 25 35 40 40 3 45
Tp 6 5 4 6 - 16 6

Table 3.1: The table shows the number of input images (Ni ), the resolution of the images
in megapixels (res), the average number of 2D edges detected (Ne), the number of 3D lines
reconstructed (Nl ), the number of automatically fitted planes (Np), the number of manually
selected planes (N ′

p), the number of elements marked by the user (N ′
r ), and the total number

of repeating elements detected (Nr ) for each data set. The computation times for 3D line
reconstruction (Tl ) and plane-based image segmentation (Tp ) are given in minutes measured on a
3.33 MHz 24-core machine.
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and our reconstruction obtained by optimizing for the contours of the repeating windows and
extruding them to the correct depth. We set the maximum distance to 0.5% of the height of the
building and provide a color-coded distance measure between the models. Typically, we observe
small error around the boundaries of the windows and slightly higher error inside the windows
due to the subtle depth changes in these regions in the ground truth model. The highest error is
produced around the door region where we have missing planes. In this example, the user defined
template element is used to detect repeating windows across multiple planes.

Regularity Initialization: When detecting discrete symmetries, our 2D-3D coupled repetition
detection algorithm uses a weighted a combination of image-based normalized cross correlation
(NCC) score and line-based similarity to compare elements. For examples where there are
sufficient image features, e.g. Building 3 and 5 in Figure 3.8, NCC matching provides a good
initialization of the present regularity. On the other hand, as the surfaces become more reflective
and textureless, e.g. Building 4 and table, image-based comparisons become inaccurate, while
3D line features provide a more reliable result. Hence, we normally use an equally weighted
combination of image- and line-based similarity measures but rely only on line-based similarity for
highly reflective surfaces to initialize the regularity discovery. The symmetry-based optimization
aids the initialization and helps to discover the remaining missing repeating elements, which are
otherwise challenging to detect.

Comparisons: In a recent effort, Wu et al. [119] has proposed a method that exploits symmetry
priors in the significantly more challenging scenario of single-view reconstruction. We compare
our approach to this method as shown in Figure 5.10. This example illustrates the benefits of
a multi-view approach that couples symmetry information across multiple images, leading to
faithful reconstructions in general.

Discrete symmetries provide multiple observations of the same piece of geometry to reduce
noise and perform hole filling. This is performed implicitly in our framework since we integrate
information across different symmetric pieces into one consistent contour representation that is
then copied to all instances. This symmetry-aware reconstruction approach outperforms general
MVS algorithms as shown in Figure 5.10. As a standard MVS algorithm operates on 3D point
samples, a surface reconstruction algorithm such as Poisson Surface Reconstruction (PSR) [49] is
necessary to extract surfaces. The MVS algorithm produces noisy and sparse point sets, especially
for reflective surfaces and PSR creates a smooth surface while filling the holes with blobs. In
contrast, our initial edge-based stereo approach enables to distinguish between the spurious and
real features and initializes a consistent reconstruction that preserves sharpness. Additionally, we
obtain a compressed representation that enables not only efficient data storage, but can directly
be used for structure-aware edits of the geometry.

User Interaction: Our framework supports several types of user interactions:

• After the automatic planar-based reconstruction step, there might be image regions labeled
with wrong plane assignments. In this case, the user can indicate rough strokes in one of
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PMVS our methodPMVS + Poisson

input image

Wu et al. (a)

Wu et al. (b)

Wu et al. (c)

our method

Figure 3.10: The comparison with the patch-based MVS method [33] illustrates that symmetry
priors and non-local consolidation are essential for objects with complex materials and repetition
patterns. The method of Wu et al. [119] fails to recover the depth of the repeating elements if
the depth change with respect to the main plane is too small. We provide depth assignments
computed by different weighting terms ((a) no repetition term, (b) repetition and smoothness
terms weighted equally, (c) smoothness term weighted more). We refer the reader to the paper
for details.

the mislabeled images that get snapped to the 2D edges to define new segment boundaries.
Such corrections in plane boundaries are then propagated to the other images. A correction
of this type has been used for the Building 4 example as shown previously in Figure 4.1.

• Lack of sufficient 3D lines might lead to missing candidate 3D planes, e.g. thin plane
regions with little support. In order to generate these missing planes, we require the user
to mark two edges to define the plane in two images which are converted to 3D lines to
compute the plane parameters in 3D. Intersections with the current planes are used to define
the boundaries of the new plane. We have used this mode in the Building 1 and 4 examples
to indicate new planes which are shown in red in Figure 3.8.

• Often there is an ambiguity in selecting semantically correct element boundaries and the
scale of the repeating elements that is difficult to resolve automatically. For humans,
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however, it is trivial to roughly mark a representative element of the intended regularity.
Therefore, we allow users to roughly indicate a single element, which is then used to detect
other repeating instances. As seen in Table 3.1, with only a few user marked elements our
algorithm can detect almost a complete set of repetitions.

• We enable the users to indicate shallow extruded depth assignments for the detected
elements similar to Müller et al [75].

Limitations: Even when exploiting symmetry priors, surface reconstruction from images re-
mains a challenging problem. Our method is based on reliable 2D edge detection and 3D line
reconstruction. Thus, if we don’t have such sufficient features to describe the geometry, our
method will fail. Similarly, symmetry detection will be ineffective in cases of limited repetition
or strong variations in the repeating elements, e.g. due to weathering. We focus on piecewise
planar surfaces bounded by straight edges, as are most common modern buildings. Curved edges
or surfaces are not handled by our method.

3.4 Closing Remarks

We have presented a coupled formulation for detecting symmetric line arrangements and 3D
reconstruction for producing factored models. This approach benefits from large-scale model
repetitions and can handle inputs with reflections or outlier objects. The coupled formulation
simultaneously improves symmetry detection and reconstruction quality. We bootstrap the
reconstruction process using rough image-space user markings. The factored facade models
provide an effective encoding of the individual building elements. This allows to perform simple
editing tasks. We have shown examples by extruding these elements to desired depth locations.
The refined element contour detection also opens up the possibility to replace the original elements
with synthetic counterparts. In this framework, we assume the initial camera calibration to be
given. We next focus on redefining the camera calibration problem by coupling it with symmetry
detection and 3D modeling.
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4 Symmetry and Structure-from-Motion

In Chapter 3, we have demonstrated that exploring symmetry priors in an image-based recon-
struction framework enables to exploit non-local coherence of symmetric elements to generate
precise model reconstructions. The first step of such a framework is to obtain camera parameters
relating the input images which we assumed to be provided as input. The core challenge of this
step is to establish reliable image correspondences as demonstrated in the previous chapters.
This problem becomes particularly difficult in presence of repeated elements that give rise to
multiple and ambiguous correspondences as in the case of building facades. Often a significant
amount of discriminating features coming from the surrounding of the buildings are necessary
to resolve the ambiguities (as was the case for the examples shown in the previous chapter).
Lack of sufficient amount of such discriminating features in combination with wide spread
repetitions, unfortunately, make stable correspondence estimation difficult, potentially leading to
poor reconstruction results.

Assume our goal is to register the pair of im-
ages shown on the left and we have detected a
feature point on the corner of a window frame
in one of them. The presence of repeating
window frames give rise to multiple candidate
feature matches in the other image leading to
ambiguity. In case sufficient descriptive fea-
tures are not detected to resolve such ambigu-
ities, traditional image-based methods often
contain one of the following artifacts: (i) large-
ambiguities due to content repetition cause
standard Structure-from-Motion (SfM) meth-

ods to produce poor and noisy 3D output, or (ii) SfM produces apparently reasonable 3D output,
but with an incorrect number of repeated elements. Even if the camera calibration is seemingly
successful, the results can be suboptimal, producing sparse, incomplete 3D reconstructions that
often accumulate error leading to drifts (e.g. straight facades appearing curved).
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Thus, we are faced with an ironic situation. On one hand, multiple observations of the same
geometry provide non-local consolidation of data resulting in improved reconstruction quality. On
the other hand, presence of repetitions lead to ambiguous feature matches making it challenging
to register a set of input images. We propose to turn this situation in our advantage by injecting
symmetry information early into the reconstruction process. Specifically, assume we have an
initial guess about the repetition grids present in the image pair given above. This information
can be used to guide the correspondence search between these images since at a high level
registering the two images is equivalent to establishing correspondences between the elements of
the common repetition pattern, e.g. a grid of window frames.

We can state our goal as to simultaneously detect regularities and establish correspondences across
the images. Thus, we aim to address the cyclic dependency of the problem of 3D reconstruction
with repeating structures: stable 3D symmetry detection requires accurate camera calibration
to obtain correct 3D point samples, while accurate camera calibration requires stable symmetry
detection to resolve ambiguities. The size of the repetition pattern is not know a priori, however,
and the pattern is not necessarily visible as a whole in any of the images. Thus, the image
registration problem amounts to recovering the repetition pattern while computing the camera
parameters of the images that view this pattern.

We have witnessed other parallel research efforts in recent years that aim to establish globally
consistent relations between a set of input images. To illustrate, Zach et al. [122] use a graph
to encode visual relations in image collections and infer false matches based on inconsistencies
of cycles in this graph. However, they do not explicitly model repetitions as in our approach,
which we found to improve the quality of the results significantly. In a follow-up work, Cohen et
al. [20] propose to use symmetry priors with collinearity and orthogonality constraints to reduce
drifts in a given SfM output. They use the method of Zach et al. [122] to compute this initial
SfM reconstruction which is assumed to be free of ambiguity. Roberts et al. [90] focus on a
specific instance of the image matching problem where large duplicate structures are present in
the scene. They explore non-geometric cues such as image timestamps to resolve ambiguities.
Jiang et al. [48] eliminate the dependency on image timestamps by formulating the problem as
finding the spanning tree of an image matching graph minimizing a global energy function and
propose a greedy search algorithm. More recently, Wilson and Snavely [113] aim to identify
wrong feature correspondences across images with repeating structures by analyzing the local
structure of a bipartite graph where feature correspondences are represented as edges from a set of
images to anticipated 3D points. In this analysis, contextual cues obtained from the background
environment play a crucial role.

Our approach is inspired by these recent efforts to establish globally consistent image relations.
Unlike all other efforts, however, we jointly focus on regularity detection and constrained SfM
formulation. We demonstrate that, with this explicit coupling we achieve significant improvements
both in terms of robustness and accuracy.
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4.1 Overview

We propose a Structure-from-Motion (SfM) framework focusing on images of buildings that
exploits symmetry priors [17]. More specifically we explore repetitions arranged as planar grids
as these are the dominant type of regularities in typical building facades. The key to our approach
is to couple camera calibration with symmetry detection. Such a coupling has several advantages.
Focusing on planar repetitions significantly reduces the search space of geometric relations across
images since any transformation induced by correspondences between images should overlap
the boundaries of the repeating elements. Exposing these constraints explicitly increases the
reconstruction accuracy. As output, we obtain a globally consistent 3D reconstruction with
explicit encoding of the extracted regularities. This information acts as a link among the input
images and the 3D reconstruction and thus enables several interactive editing possibilities.

input images registered images reconstructed 3D + calibrated cameras

registered images + symmetry structuresolution
graph

image space
symmetry detection

symmetry based 
image registration

symmetry based 
structure-from-motion

Figure 4.1: Given a set of images, we perform symmetry detection in each image based on
a user marked template (in orange). We use this symmetry information (shown in yellow)
to solve for a consistent global repetition pattern using a graph-based optimization. We then
use a symmetry-based SfM method to simultaneously calibrate the cameras and extract a 3D
reconstruction.

Our framework takes as input a set of unordered images I = I1, I2, . . . , In of a building, which we
assume to contain one or multiple 1− or 2− parameter repetition patterns on each facade. We do
not require the full facade repetition grid to be completely visible in any single image and the
repetitions can be arranged in multiple facades.

The user roughly indicates elements of interest, for example, a repeating window frame visible
across the input images, on any one of the images. This is the only manual assistance required in
our pipeline. We then detect repetitions of these elements and compute initial estimates for the
grid generators of the detected patterns.

Next, in a key algorithmic stage, we pose correspondence search across images in I as solving
for offset positions for each image on an (unknown) global repetition grid. We simultaneously
solve for offset positions and estimate the associated camera parameters for each image, while
also detecting the 3D repetition pattern. The optimization is formulated as selecting a subset of
consistent edges from an image matching graph, where a node corresponds to an image in I and
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each edge denotes an estimated image-pair alignment, which can possibly be wrong. We solve
for a consistent set of edge alignments by progressively refining the alignments.

Subsequently, we perform bundle adjustment with the extracted symmetries as constraints that
encode the grid arrangements of the repeating structures. Our algorithm outputs the final camera
poses and a sparse 3D reconstruction of the scene together with the refined symmetry parameters
in 3D. We illustrate that this information is useful for exploring a range of editing possibilities
coupled across multiple images via the detected symmetries.

4.2 Algorithm Details

We now provide the details of the individual components of our pipeline.

4.2.1 Initial Grid Estimation

Given a set of input images I , our goal is to bring these images into correspondence. Our
main observation is that the underlying facade repetition structure can be explored to restrict the
continuous search space of alignments to a discrete set of possibilities, that is the correspondence
across an underlying 2-parameter repetition grid. Thus, we first aim to detect such repetitions for
each image, which are later used to globally establish correspondence across all the individually
extracted grids.

As demonstrated in the previous chapter, building facades typically contain dominant repetitions
arranged along vertical and horizontal directions. Therefore, in order to eliminate the effect of
perspective projection, we first detect dominant vanishing points in each image Ii ∈I using the
cascaded Hough transform [106] and use these vanishing points to rectify the original images
to be fronto-parallel. With slight abuse of notation, we will denote these rectified images as Ii

as well. For images where multiple facades are visible, we detect multiple vanishing points and
perform rectification with respect to each of these candidate vanishing points.

Our next goal is to detect repeating elements in the resulting rectified images. As in the case of
the reconstruction framework presented in the previous chapter, we allow the user to prescribe the
element of interest in one of the input images. This user assistance allows to identify a semantic
element which can later be used in various editing applications. Since the rectified images can be
at different scales, we match features across them to estimate their relative scalings. Specifically,
as rotation changes are already compensated through rectification, we extract SIFT features
with fixed upright orientation. We estimate the scale change between a pair of rectified images
by clustering the scale differences between the feature matches (see also the work of Baatz et
al. [5]). We make a note that ambiguous feature matches arising from repetitions do not affect
the scale estimation since SIFT features detected in a rectified image have similar scales across
the repeating elements (see Figure 4.3).
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Figure 4.2: Given a pair of rectified images (left) with a repeating element T marked in one image
(top-left), we use SIFT features to estimate the scale factor s relating the image pair (middle).
We then create a scaled template sT suitable for the other image. Thus, we detect image-level
repetitions (in yellow) across each individual rectified image (right).

Once the scale changes across the rectified images are computed, the user marked element is
scaled accordingly for each rectified image Ii and used as a template for repetition detection.
We perform template matching in the images by comparing local image patches based on the
(scaled) template using Normalized Cross Correlation. Finally, for each image we complete
the initialization by fitting a grid to the detected elements and estimate the corresponding grid
generating transformations as introduced in the previous chapter.

4.2.2 Symmetry-based Image Registration

The key to successful SfM computation is correctly establishing image correspondences. For
images of facades with dominant symmetries, correspondence extraction is difficult as repeating
structures create multiple locally consistent matches, many of which are wrong. To avoid this
challenge, we establish globally consistent correspondences by explicitly using the extracted
repetition information. Intuitively, our goal is to position each rectified image on a common
regularity grid with spacing as extracted in the previous section. Using the current symmetry
estimates for each image, positioning the images amounts to assigning discrete index positions
to each image on this repetition lattice. In other words, the transformation between the images
amounts to calculating shifts in rows and columns required to align the corresponding grids in
these images. In order to consistently assign these shifts, we collectively analyze the images.
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Figure 4.3: Given a pair of images with their detected grids (left), for each candidate alignment
we detect the overlapping grid regions (shown in green). We compute feature matches outside
the overlapping regions and count the number of matches supporting the candidate alignment.
Top-right shows the correct alignment with highest support (51 matches) and the bottom-right is
a wrong candidate alignment (25 supporting matches).

For each image pair (Ii , I j ), a candidate alignment can be encoded as the number of rows and
columns the corresponding grids should be shifted over each other. Detection of the image-space
grids enables to list all possible candidate alignments between Ii and I j as a discrete set of shifts
in rows and columns. Our goal is to rank such candidates to find the most likely alignment for
the image pair. We use SIFT feature matches detected in the original images to perform this
evaluation. The detected SIFT features can be grouped into two categories: (i) features that are
found outside the repetition regions are most likely to help disambiguate the correct alignment
between an image pair; and (ii) features that are detected inside the repetition regions are likely to
result in ambiguous matches. In practice, we observe that grid regions also contain discriminating
features due to small random variations such as the shape of curtains, window customization,
etc. Therefore, instead of discarding all the features detected inside the repetition regions we
only discard those features that are most likely to cause ambiguous matches. Specifically, each
candidate alignment between an image pair overlaps certain grid regions according to the encoded
shift in rows and columns. We assume that a correct alignment will map the grid regions that are
most similar in both images. Further, the feature matches obtained from the remaining regions
should agree with the candidate alignment. Therefore, for each candidate alignment, we discard
the features detected only inside the overlapped grid cells and match the remaining features.
Each pair of feature matches produces an estimate of the scale and translation that maps the
corresponding rectified images on which the grids lie. We convert each of these estimates to
shifts in rows and columns between the two grids by computing the grid cells they map. We
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consider two grid cells to be mapping to each other if the distance between the cell centers after
mapping is below a certain threshold (2% of the image width in our experiments). The feature
matches, which suggest the current row/column shift being evaluated, provide support for this
candidate (see Figure 4.3). After evaluating all possible candidate alignments for an image pair
(Ii , I j ), we pick the candidate alignment that receives the highest support and assign a weight
wi j equal to the number of supporting feature matches. After all pairwise candidate alignments
are detected, we normalize the support weights of all the selected image alignments by dividing
by the maximum number of support matches.

We observe that exploring the grid information during feature matching improves the quality of
the detected candidate alignments. However, considering only local pairwise relations is unlikely
to resolve all the ambiguities. Instead, in a subsequent step, we analyze collections of pairwise
relations.

Image matching graph. We encode the detected pairwise image alignments as a matching graph
G = (V ,E), where a node ni ∈ V represent the image Ii , while an edge ei j ∈ E represent the
alignment picked between the image pair (Ii , I j ). We recall that each edge is weighted by the
corresponding support wi j for the image alignment. The edges in this graph are constructed using
information only from image pairs, and hence can contain spurious matches due to ambiguity
arising from repetitions. In order to detect such spurious edges, we look for consistency among
edges in cycles in this matching graph to assess the reliability of the image alignments.

A key observation about the image matching graph is that accumulated alignments along the edges
in any cycle in this graph represent a mapping from an image to itself. Thus, the corresponding
cumulative transform should be the identity, i.e, accumulated corresponding grid shifts should
result in zero row and column shift. Any cycle where the accumulated shifts do not cancel out
indicates the presence of at least one incorrect alignment edge in the cycle. We call such cycles
inconsistent. Our task is to identify such spurious edges in inconsistent cycles and remove them
from G , while still retaining the consistent alignments.

Optimization setup. Based on the preceding observations, we now select a consistent set of
alignment edges while discarding the wrong alignments. Effectively, we identify the wrong
alignments based on the corresponding supporting weights and the inconsistencies involved. We
introduce a binary penalty cost χe ∈ {0,1} for each edge e ∈ E , where a penalty cost of 1 denotes a
wrong alignment and a penalty cost of 0 indicates a correct alignment. Our goal is to extract a
globally consistent penalty cost assignment for all the edges in G via a joint formulation. We
extract such a set of consistent assignment of costs {χe } for edges e ∈ E as:

minχe

∑
e∈E weχe

subject to
∑

e∈Li
χe ≥ 1, ∀Li ∈ L , (4.1)
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where L denotes all the detected inconsistent cycles in G . In order to make this aforesaid integer
problem convex, we relax the constraints χe ∈ {0,1} to be χe ∈ [0,1]. We solve the resultant
problem using CVX, a package for specifying and solving convex programs [22].

initial matching graph iteration 3 iteration 6 (final iteration)

Figure 4.4: Starting from all candidate pairwise matches, we introduce an optimization that
iteratively improves the quality of the alignments (wrong alignments are shown in red). The
minimum spanning tree of the final graph (shown as solid edges) provides the final image
alignments.

In order to save computation, we only look at 3-cycles in the matching graph G and extend
this analysis to longer cycles in an iterative approach (see also the work of Nguyen et al. [80]).
Intuitively, we first resolve 3-cycles in the graph G and then use the extracted consistent edges to
improve estimates of the other alignments. In order to balance between global consistency and
local feature-level image-pair matching, we discourage rejection of high-confidence edges, i.e,
edges with high weights. Hence, we normalize the computed edge penalties as χe ←χe /we for
all the edges. (We update the range of χe to be [0.1,1] to avoid getting continuous penalties of 0.)
Next, we use the current edge costs χe to improve image alignments. Specifically, for any edge
ei j ∈ E we compute the shortest path between image nodes ni and n j using the edge costs χe in
G . If the total cost of such a shortest path is less than the cost of the original edge, we replace the
alignment denoted by ei j by composing the alignments along the shortest path, thus potentially
improving the alignment for images Ii and I j (see Figure 4.5). We also update the weight wi j

to be the minimum of the weights along the shortest path. Note that the alignments replaced in
this manner implicitly represent longer paths and hence the 3-cycles considered in the successive
iterations actually end up as longer cycles in the original graph [80]. After performing the
necessary alignment replacements, we resolve a new global optimization using Equation 4.1 and
continue the process. This iterative algorithm converges when no more alignment gets replaced
(8−10 iterations in our experiments). After convergence, we select the minimum spanning tree
of G based on the final edge costs χe to obtain the final image alignments (see Figure 4.4).We
use these alignments to filter the pairwise feature matches and preserve only the matches that
support the corresponding alignments.

Non-grid alignment: In case of images where no grid is detected or a candidate grid matching
alignment with sufficient support (a minimum of 20 supporting feature matches in our tests) is
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Figure 4.5: For the images I1, I2, and I3 (in top), the wrong candidate alignment between (I1, I2)
(in red) is replaced by the correct accumulated alignment along the shortest path I1 → I3 → I2

during the iterative grid optimization. For each alignment, the overlapped images are shown
together with the mapped grid regions (yellow and green).

not found, we perform traditional SIFT feature matching and encode the candidate alignment
as a transformation matrix. In order to evaluate the consistency of a cycle involving non-grid
alignments, we compute the rotation associated with each of the candidate alignments and
compute the composite rotation RL along the cycle [122]. In a consistent cycle, RL should be
equivalent to the identity transformation. However, in a noisy setting this equivalence holds only
approximately. We compute the rotation angle αL of RL using a quaternion representation and
mark the cycle as inconsistent if |αL | is greater than a threshold angle (10◦ in our tests). Such
non-grid alignments are often invoked for the images that view the corners of a building with
multiple facades.

4.2.3 Symmetry-based Structure-from-Motion

In the previous section, we established globally consistent feature correspondences across the
input images. In addition, we compute the center point of each extracted grid element and form
correspondences across these points over all the images. We now use these correspondences
to estimate the extrinsic camera parameters, while using the EXIF tags to obtain the internal
parameters such as the focal length of the cameras. Using these initial camera parameters and the
grid point correspondences across the images, we obtain rough 3D grid points and corresponding
grid generators. Note that at this stage, both the camera parameters and the estimated grid
generators are only approximate. We refine these parameters by a nonlinear bundle adjustment
algorithm.
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We first organize the feature matches and the grid correspondences between the images into
tracks where each track represents a connected set of matching points across the images. Given
such a set of feature tracks and the estimated camera parameters, our goal is to recover the
3D position corresponding to each track. We refine the camera positions and orientations to
minimize the reprojection errors, that is, the distance between the projection of a track point and
its corresponding image matches. More importantly, we use the estimated symmetry relations
between the grid points as a regularizer. Thus, instead of independently computing each 3D grid
point, we simultaneously look for the 3D grid parameters, the position of a reference point, and
the generators, which minimize the sum of the reprojection errors of all the grid tracks.

Assume we have a set of m cameras parameterized by Ak . Let P (Ak ,p) denote the projection
function mapping a 3D point p to its 2D projection q in the k-th camera with parameters Ak .
Furthermore, assume a grid with r rows and c columns is represented by the reference point o

and the grid generators (th,tv). Minimizing the reprojection error of the grid tracks corresponding
to this 3D grid is equivalent to minimizing the following energy:

Eg r i d =
m∑

k=1

r∑
i=1

c∑
j=1

λk
i j‖qi j −P (Ak ,xi j )‖, (4.2)

where the 3D grid point at the i -th row and j -th column of the grid is represented as xi j =
o+ (i −1)th + ( j −1)tv. qk

i j denotes the projection of this point in the k-th camera and λk
i j is

an indicator variable equal to 1 if this grid point is visible in the corresponding image and 0

otherwise.

We formulate a similar energy function for the remaining n non-grid feature tracks parameterized
by the 3D points bi . Minimizing the sum of the reprojection errors for these tracks is equivalent
to minimizing the following energy:

Eother =
m∑

k=1

n∑
i=1

βk
i ‖qk

i −P (Ak ,bi )‖, (4.3)

where βk
i is an indicator variable with βk

i = 1 if point bi is visible in the k-th image and 0

otherwise.

Finally, we combine the energy terms for the 3D grid and the non-grid tracks and minimize the
resulting objective function using the Levenberg-Marquardt method [63]:

E = Eg r i d +Eother . (4.4)
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At the end of this enhanced bundle adjustment step, we obtain the refined camera parameters, a
sparse 3D representation of the scene, and the refined grid parameters.

4.2.4 Vanishing Line Refinement

The results obtained at this stage might retain any bias introduced in the initial vanishing line
detection used for rectification. To reduce this bias, we update the rectification of the input images
using the computed 3D geometry. Specifically, we fit planes to the reconstructed 3D point cloud
where each plane corresponds to a facade of the building. Then we find the facade plane on which
each detected 3D grid lies and update the position of each 3D point representing a grid cell by
projecting to its facade plane. We reproject these 3D points to the input images to refine the grid
correspondences across the images. For each 3D point x representing a grid cell in a 3D grid, we
compute the average reprojection error as:

Per r or =
m∑

k=1
λk‖qk −P (Ak ,x)‖/

m∑
k=1

λk , (4.5)

where λk is an indicator variable equal to 1 if this grid point has been detected in the k-th image,
and qk denotes this detected 2D grid point if λk is 1. We exclude the grid cells for which Per r or

is above a certain threshold (5% of image width in our experiments) and update the number
of rows and columns of a grid accordingly. We observed that this evaluation helps to fix any
minor errors that might have occured during the grouping of the image grids (due to small
variations in grid transformations which have not been detected in image space). With these
refined correspondences, we rerun the constrained bundle adjustment step to obtain the final
camera parameters and the 3D grids. In our tests, we found a single iteration of refinement to be
sufficient (see Figure 4.6).

4.2.5 Extension to Multiple Grids

Our SfM pipeline can handle buildings that contain one or multiple 1− or 2− parameter repetition
grids. We now describe, in detail, how we adapt our framework to handle such multiple grids.
We observe that multiple grids can occur as: (i) multiple arrangements of the same base element,
or (ii) grids of different user-indicated base elements.

Given any image pair (Ii , I j ), let us assume multiple grids have been detected in these images.
We consider any grid pair (gi , g j ), where gi ∈ Ii and g j ∈ I j , that shares the same base element as
a potential projection of the same 3D grid. Therefore, during the image feature matching step,
we list all the potential matching grid pairs across the images. For each such grid pair (gi , g j ), we
perform the symmetry guided feature matching step as explained in Section 4.2.2. Specifically,
we evaluate all the candidate alignments corresponding to different shifts in rows and columns
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Chapter 4. Symmetry and Structure-from-Motion

initial bundle adjustment

final bundle adjustment

Figure 4.6: Once we obtain the initial 3D representation, we refine the rectification of the input
images and repeat the symmetry-based SfM step. In the initial image matching step, the windows
in red have been grouped together with the windows in yellow (resulting in a 2-by-4 grid) but
have been discarded due to high projection error (resulting in a 2-by-3 grid).

between the grids gi and g j . Once the candidate alignments have been evaluated for all the grid
pairs, we pick the alignment with the highest support. Using the feature matches that support
this selected alignment, we detect the remaining matching grids in the images (Ii , I j ) that are the
projection of the same 3D grid and find the corresponding row/column shifts between them. We
add the selected alignment to the matching graph G as edge ei j encoding the grid shifts between
all the matching grids between the corresponding images.

Later, in the iterative optimization setup, for each cycle in the image matching graph, we consider
the accumulated alignments between all the common grids in the images participating in the
cycle. More specifically, for a cycle between the images Ii , I j , and Ik , grids gi ∈ Ii , g j ∈ I j , and
gk ∈ Ik are common grids if the edge ei j encodes a grid shift between gi and g j , e j k encodes a
grid shift between g j and gk , and eki encodes a grid shift between gk and gi . If the accumulated
grid shifts between any such common grid do not cancel out, the cycle is marked as inconsistent.
Similarly, if we swap an alignment represented by an edge with an accumulated alignment along
the shortest paths in G , we update all the grid shifts represented by this edge between the common
grids in the images involved in the path.
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At the end of the iterative optimization, the final alignments computed for each image pair (Ii , I j )

encode the correct matching image grids and the shifts between them. Using these alignments,
all the image grids matched to each other across the input images are grouped together where
each group represents the image projections of the same 3D grid. For each 3D grid, we organize
the grid correspondences as grid tracks. We update the bundle adjustment objective function to
include a grid energy term for each of the g 3D grids and refine the parameters of each 3D grid
with this bundle adjustment step:

E =
g∑
1

Eg r i d +Eother . (4.6)

4.3 Evaluation

We evaluate our framework on several datasets with varying complexity of the underlying
symmetries (see Figure 4.7 and 4.8). We provide a complete set of results in Appendix A and list
the performance statistics of the proposed method in Table 4.1. We now summarize our main
findings.

Ni res Nr Ts (mins) To (mins) Ours Bundler Zach et al. 10
Building 1 26 6.2 28 10 5 yes poor no
Building 2 27 7.7 42 15 2 yes conf. poor
Building 3 26 3.5 10 8 2 yes yes yes
Building 4 24 7.7 44 6 1.5 yes yes yes
Building 5 25 6.2 22 20 1.5 yes conf. poor
Building 6 32 6.2 22 40 1 yes yes poor
Building 7 51 6.2 101 45 6 yes mult.. mult.
Building 8 72 6.2 36 50 8 yes no mult.
Building 9 13 6.2 0 4 1 no no no
Building 4

lowRes
24 0.5 44 1 0.5 yes no conf.

Table 4.1: The table shows the number of input images (Ni ), the resolution of the images in
megapixels (res), and the total number of repeating elements detected (Nr ) for each data set.
We also report how our method, Bundler, and the method of Zach et al. perform: a correct
reconstruction is produced (yes), the output is poor in quality (poor), there is a confusion in the
number of repeated elements (conf.), or reconstruction contains multiple misaligned components
(mult.). The computation times for image-based symmetry detection (Ts) and a single iteration of
symmetry-based SfM (To) are given in minutes measured on a 2.8 GHz 4-core machine.

Comparisons. In our proposed framework, we explicitly detect repeating elements in the input
images and use this information both to extract reliable image correspondences and estimate
camera parameters accurately. We compare this approach to a standard SfM pipeline [103] and
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Figure 4.7: For each example, we provide a sample input image, the user marked template
in a single image (orange), the extracted repetition pattern and the calibrated cameras. This
information is used for a range of image manipulations.

the inference-based ambiguity detection method of Zach et al. [122], which also has been used
as an initializer in the followup work of Cohen et al. [20]. To illustrate the effect of accurate
camera pose estimation for dense reconstruction, we use a state-of-the-art multi-view stereo
method [33] to produce dense reconstructions of the input scenes using the camera parameters
estimated by each of the methods. We use the EXIF tags of the images to estimate the internal
camera paramters in all three cases. In Table 4.1, we report how these three methods perform on
each data set marking the output based on if: (i) a correct reconstruction is obtained, (ii) output is
poor in quality, (iii) wrong number of repeated elements is reconstructed, or (iv) multiple sub-
models corresponding to different subsets of the input images are reconstructed. Our algorithm
accurately extracts the camera parameters in most of the examples leading to accurate dense
reconstructions, while Bundler [103] or the approach of Zach et al. [122] fail or often produce
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Figure 4.8: Our approach handles buildings with multiple facades while preserving the orientation
of the individual facades both for orthogonal (Building 8) and non-orthogonal (Building 7)
relations. We provide a satellite imagery of Building 7 for reference.

sparser reconstructions. We provide detailed comparisons in Appendix A.
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Figure 4.9: For the Building 1) data set, the method of Jiang et al. [48] registers 21 out of 26
images. For the Building 7 example, our method produces significantly higher-quality output
especially for the right facade of the building highlighted in orange.

We also compare our method to the recent approach of Jiang et al. [48] that formulates the
image matching problem as finding the spanning tree of the image matching graph minimizing a
global energy function (see Figure 5.10). They propose a greedy search algorithm that resolves
an important portion of the image matching ambiguities. They do not explicitly model any
particular form of symmetry or repetition. In constrast, by injecting symmetry priors into every
step of the reconstruction pipeline, our method effectively resolves the remaining ambiguities and
significantly improves the quality of the reconstructions. Further, in contrast to all other methods,
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our approach produces the repetition patterns directly as part of the output.

with symmetry information

without symmetry information

Effect of symmetry. Explicit encoding of the
extracted symmetry information enables our
method to effectively evaluate the reliability
of the alignments between the input image
pairs. In the symmetry-guided feature match-
ing step, we first list all the candidate align-
ments between an image pair, and then dis-
card the potential ambiguous matches. We ob-
serve that the remaining sparse set of feature
matches arising due to non-repeating regions
and the random variations in the non-discarded
repeating regions (such as ornaments, weath-
ering, etc.) often provide sufficient support for
the correct alignments. Moreover, during the
global optimization performed on the match-
ing graph, we iteratively improve the quality
of the alignments by discarding the discovered
inconsistencies. The inset figure illustrates the
effectiveness of the grid constraints during the
iterative graph optimization step. We compare our results to the case where consistency of the
image alignments are evaluated based on the corresponding rotations only. We observe that in the
latter case some ambiguities remain unresolved and only a subset (18 of 26) of the input image
set is registered.

front view
no symmetry constraints

top view

front view
with symmetry constraints

top view

In the inset figure, we illustrate the effect of us-
ing additional symmetry constraints in bundle
adjustment on the quality of the final recon-
structions. Since we work with a repetitions
arranged as planar grids, explicitly enforcing
the symmetry relations across the grid corre-
spondences acts as a regularizer and signifi-
cantly reduces drift, especially in long image
sequences. Unconstrained solution produces
a distorted facade (blue dotted line shown for
reference) with the repeated elements drift-
ing from the correct solution. Further, our
algorithm successfully recovers the correct ori-
entation of the individual facade planes of a
building without any additional assumption on
the orientation relations like orthogonality (see

Figure 4.8).
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4.3. Evaluation

Robustness to low-resolution inputs. Our symmetry-aware correspondence search makes the
approach robust to degrading image resolution. To illustrate this, we tested our framework on
an image set at two resolutions (see Figure 4.10). Both Bundler and the method of Zach et
al. [122] performed poorly in the low-resolution setting because a significant amount of features
are only seen in the high-resolution images due to small random variations in the facade elements.
However, our method extracts the correct relations among the input cameras using the sparse
feature set by exploring the initially detected repetitions in the images.

Bundler (2006) Zach et al. (2010) our method
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Figure 4.10: For the Building 1 data set, the method of Jiang et al. [48] registers 21 out of 26
images. For the Building 7 example, our method produces significantly higher-quality output
especially for the right facade of the building highlighted in orange.

Limitations. Although we handle a range of diverse data sets, our approach still suffers from
various limitations. We assume facade elements to be repeated along 1- or 2-parameter regular
grids and do not handle rotational symmetries as found on domes, churches, etc. In certain
cases repeated elements have non-uniform gaps with sufficiently small variations that cannot be
recovered neither in image space nor the 3D reconstruction step. As a result, image-based regular
structure detection might fail.

Even though the symmetry-guided correspondence search and the iterative global optimization
improves the quality of the image alignments significantly, we do require a sufficient amount of
discriminating features to bootstrap the process. In case of insufficient discriminating features,
our method will fail to resolve all the ambiguities (see Figure 4.11).

Although we do not require the repetition grids to be visible in full from any single image, we
do expect a reasonable overlap between the images so that we get a connected solution graph.
In the absence of sufficient overlap, the solution graph can have multiple components leading
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Chapter 4. Symmetry and Structure-from-Motion

to multiple reconstructions. While we did not encounter such a problem in our examples, we
believe that further investigations to better characterize the requirements on the input images are
necessary.

We focus on facades with dominant facade planes. If facade elements show significant depth
variations, image-based repetition detection cannot be performed reliably [47]. While we didn’t
observe serious artifacts, our 3D reconstructions capture limited depth information, especially
around sharp features and statues, etc., which limits the scope of subsequent editing possibilities.

our method Bundler (2006) Zach et al. [2010]
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Figure 4.11: For the Building 9 data set, due to lack of sufficient discriminating feature matches
our method fails to resolve the ambiguities. The dense reconstructions computed with the camera
parameters obtained from our method and Bundler are shown. The method of Zach et al. [122]
does not produce any camera parameters.

4.4 Applications

Once we register the set of input images, the extracted symmetries of the scene allow the user
to perform various image editing applications, while the changes are automatically propagated
to all the images. Besides demonstrating various use cases, these applications are important to
highlight the robustness and accuracy of the reconstruction algorithm as the applications heavily
rely on precise symmetry boundaries.

Occlusion Removal. Often street-level images of building facades contain many foreground
objects such as street lights, trees, and cars, which partially occlude the background facade plane.
Redundancy in the form of multiple images and repeated elements in the input set allows us to
synthesize seamless textures to remove such occlusions.

Given a set of input images (I1, ..., In), we require the user to provide rough strokes on a single
reference image Ii to denote the occluding object that is to be removed. We useGrabCut [91] to
extract an accurate mask Bi for the occlusion area. If the occluder object has delicate structures,
like tree leaves, we require the user to provide more refined strokes. Typically, each pixel in this
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4.4. Applications

bounded region occludes a point that lies on the main facade plane. Our goal is to synthesize the
texture for this occluded area of the facade plane, which we approximate by using the extracted
3D grid information. We back-project each pixel p ∈ Bi in the occlusion region to the facade
plane to obtain the 3D position q of the corresponding occluded point.We then project q to the
other images to find a set of candidate pixel colors that can be used to replace p in the reference
image. Once a set of candidate colors has been computed for each pixel, the desired texture is
synthesized by estimating a label L(p) ∈ [1, ...,n] for each pixel p denoting which image should be
used as the source color for p.We formulate this texture synthesis problem as a Markov Random
Field (MRF) optimization by minimizing an energy function consisting of data and smoothness
terms. The data term measures the cost of assigning the label L(p) to pixel p:

Ed at a(p,L(p)) =| ILp (p)−ρ |,

where IL(p) denotes the color of pixel p in the labeled image and ρ is the median of the candidate
colors for pixel p. To reduce the seams in the synthesized texture, we define a smoothness term
to asses the labelings of neighboring pixels (we consider 4-connected neighbors) by evaluating
the color and the gradient differences similar to Sinha et al. [101]:

Esmooth(p, q,L(p),L(q)) =
{

0 if L(p) = L(q)

dI +dG else

where dI =| IL(p)(p) − IL(q)(p) | + | IL(p)(q) − IL(q)(q) | and dG =| ∇IL(p)(p) −∇IL(q)(p) | + |
∇IL(p)(q)−∇IL(q)(q) |. We use the graph cut algorithm [12] to solve this optimization prob-
lem. Once we choose the source images for each pixel in the synthesized texture, we use Poisson
blending [86] to further reduce the seams across the occlusion boundaries in the original image
(Figure 4.12).

Importantly, once the user-marked occluding area Bi is removed from the reference image, we
can propagate the edit and remove the occluder also from the other images. To enable this
operation, we need depth estimates for the occlusion object in the reference view to determine
its projection in the other images. Since the occluding object lies in front of the main facade
plane, we construct a depth volume bounded by the reference camera position and the depth of
the facade plane and use an MRF energy minimization approach to optimize for the depth of
each pixel in the occluded area. We formulate the data term of the MRF energy based on NCC
matching costs of image patches (see Campbell et al. [2008]):

Ed at a(p, x) = e−β{p,x}, (4.7)
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PatchMatch resultour result propagated to other images

Figure 4.12: Occlusion mask marked in one image (top-left) is propagated to the other im-
ages. Occlusion removal using propagated information from other images provides significantly
improved results compared to the single-image based state-of-the-art PatchMatch [8] method.

where x denotes a discrete depth sample inside the depth volume. β{p, x} denotes the average
NCC matching score of the image patches generated by projecting the 3D point obtained by
assigning the depth x to p to the other views. We define the smoothness energy as the sum of
the depth deviation between a pixel and its 4-connected neighbors [Szeliski et al. 2008]. Similar
to Sasaki et al. [2006], we define the data term in a multi-resolution framework to increase the
accuracy of the depth estimates. In other words, we start with a coarse sampling of the depth
volume, and iteratively generate finer samples around the current depth label for each pixel. Once
the depth estimates for each pixel in the reference occluding region are computed, this region is
projected to the other images and the texture is synthesized in these projected areas as described
before (see Figure 4.12).

Grid Editing. Our framework extracts 2D/3D symmetry information of the input scene in the
form of planar repetition grids. This information allows the user to directly manipulate the grids
such as changing the repetition count in the grid as previously shown by Wu et al. [2010b]
or editing the appearance of the grid elements on a single image. Our system automatically
propagates the changes to the other images as the relation between the 2D image grids and
the global 3D grid is already computed. Technically, we first extract accurate boundaries of
the repeating elements by snapping their initial contours to the image edges. Similar to the
reconstruction framework presented in the previous chapter, we then optimize for the common
contour by a line fitting approach. In contrast, we only optimize for the contour lines as we
have already extracted the refined 3D grid generators. Once the contour of each grid element is
computed, we change the number of repetitions in the 3D grid by keeping the boundaries of the
grid fixed and appropriately scaling the grid elements. This amounts to editing only the relevant
parts of each image where the 3D grid projects (see Figure 4.13). We synthesize the texture
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for the new grid elements by scaling the original elements. To minimize seams and lighting
variations, for each new grid element, we use the texture from the spatially closest original grid
element. In case of occlusion, we require the user to roughly annotate the occluding object, while
we perform necessary image completion as described before. The occluding object is encoded as
a separate layer and later composed with the edited images.

Figure 4.13: Extracted facade grid patterns (left) are changed and then composited with the
foreground (e.g. lamp post). These changes are propagated to the other images.

We would like to emphasize that these editing applications are only as powerful as the detected
symmetries. Also, lack of sufficient depth information can lead to artifacts near 3D elements
on the original images (e.g., window ledges, etc.). Thin structures (e.g., tree branches, leaves)
can be difficult to annotate in the images and also are challenging to propagate across images
since corresponding 3D points are few and sparse. A complete 3D reconstruction framework is
necessary to obtain the depth of such structures.

4.5 Closing Remarks

We have presented a structure-from-motion
framework that detects and conforms to struc-
tural regularities, while simultaneously recov-
ering 3D geometry. A novel graph based
global analysis yields a globally consistent 3D
geometry reconstruction with explicit encod-
ing of the facade regularities. These regular-
ities can then be used for a range of novel
image manipulations, while maintaining con-

sistency across the images. Even though we have focused on planar repetition grids, a natural
extension is to incorporate rotational symmetries as found on arches, domes etc.
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With the growing demand for simple, fast, and accurate acquisition methods for digital cities,
we expect to see increasing research efforts in this direction. Specifically, we believe that
simultaneously editing image collections brings up exciting opportunities for interactive and
dynamic interfaces. We illustrate a first result where the extracted scene geometry along with
symmetry information can be used towards new editing possibilities such as inserting synthetic
objects as shown in the inset figure. Advanced appearance matching methods ([124]) can
potentially be used for better color blending.
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5 Understanding Structured Variations

In the previous chapters, we have explored symmetry priors in both stages of a traditional image-
based reconstruction pipeline. We have demonstrated that use of such priors simultaneously
improves the reconstruction quality and provides semantic information about the acquired data.
Focusing on more modern style buildings, however, we made strong assumptions on the type of
symmetries to detect. We concentrated on regularities arranged as 1- or 2-dimensional planar
grids. Even though these type of regularities are among the most common type of symmetries for
modern building facades, they are not sufficient to capture the type of structural relations we see
in other types of buildings.

Figure 5.1: For many buildings, similar elements can be arranged by varying transformations,
located at different facades of a building, and exhibit certain structured variations.

To begin with, for many buildings, similar elements are not necessarily found in planar grid
arrangements; they can possibly be related with varying transformations on the same facade,
located at different facades of a building, or linked by rotations. A more important observation is
that, certain repeating elements might exhibit structured variations. We observe such variations
commonly in historic ornate buildings, for example window elements might have the same shape
but vary in height (see Figure 5.1.) Exploring such structural similarities from raw and noisy data
measurements as obtained in multi-view stereo (MVS) reconstructions is challenging. On the
other hand, once detected these similarities enable a high-level understanding of the underlying
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geometry and thus provide effective priors for augmenting the MVS algorithms.

We investigate this problem by utilizing a set of template models of element types commonly
found in buildings such as windows. The advantages of using templates are two fold. First,
each template is equipped with a deformation model that allows to capture the variations of a
base geometry. Second, buildings designed with the same architecture style or serve the same
functionality often resemble similarities among their elements. Thus, the style of the target
buildings can be taken into consideration during the selection of the templates to capture such
similarities.

Given such a set of templates, we formulate similarity detection as a labeling problem. Our goal
is to identify the best matching template for each element and compute the corresponding defor-
mation parameters. Patterns extracted in the resulting deformations reveal element similarities.
This approach enables us to make a general definition of similarity: elements deformed from the
same template with similar deformation parameters are similar. This general similarity definition
eliminates the need for making prior assumption on the spatial arrangement of similar elements
and the type of symmetry relations that exist among them.

A naive approach to detect such similarities is to first perform an independent template fitting
for each element and then detect similarities in the resulting template deformations, e.g. with a
standard clustering method. However, noise and outliers in MVS reconstructions prevent robust
template fitting. Hence, such an independent analysis fails to detect reliable element similarities.
Instead, we present a coupled approach where our goal is to simultaneously perform template
fitting and extract patterns in the resulting template deformations. We repeat template fitting
by consolidating data across elements based on the detected patterns. Performing this analysis
iteratively reveals which elements are exact replicas of the same geometry and which share partial
similarities. The extracted similarities provide semantic information about different parts of the
elements and their relationships. This facilitates high-level analysis, but also paves the way to
generative modeling and structure-aware editing.

There has been prior work on exploring the use of templates during the reconstruction process. In
an early attempt, Dick et al. [25] use a set of parameterized part templates to create 3D building
models from single images. Subsequently, Schindler et al. [96] fit segmented image measurements
to a set of predefined shape templates to create CAD-like 3D facade reconstructions; Pauly et
al. [83] warp selected models from a database of 3D shapes and combine suitable parts towards
object completion; Chen et al. [18] propose an interactive setup to lift freehand sketches to 2.5D
using a database of architectural elements. Typical man-made objects have also been used for
indoor scene understanding [53, 78]; while, Bao et al. [7] use anchor points to deform and fit
shape templates to poor quality MVS reconstructions. All these approaches, however, either
assume that exact shape templates are available, or only allow limited deviations (i.e., warps)
from the templates. Furthermore, multiple templates are fitted independently across the scene
making it challenging to ensure robustness for partial inputs or limited template database. In
contrast, we propose to couple the template fitting via the extracted deformation parameters.
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5.1. Overview

5.1 Overview

We present a coupled template matching and deformation algorithm to understand structural
variations between the elements of a building. In a one-time pre-processing stage, we construct a
set of template models of common element types, e.g. windows. Each such template is charac-
terized by a set of deformation parameters that define variations of the model (see Figure 5.4).
Our algorithm takes as input a set of images I = {I1, . . . , In} of a building and computes its 3D
MVS reconstruction. The user roughly indicates elements of interest such as a window frame
in one of the input images. For each of these elements, we identify the best matching template
and compute the best fitting deformation of this template, which we call a template instance. A
key element of the proposed algorithm is to reveal geometric similarities among the elements by
detecting patterns in the deformation parameters of their matching template instances.
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Figure 5.2: (a) In case of perfect input data, elements with the same geometry are mapped to
a single point in the 2-dimensional deformation space of a rectangular template T . (b) The
presence of noise and missing data, however, makes it challenging to observe clear clusters in
the deformation space. Similarity matrices computed using the pairwise element distances in the
deformation space reveal this behavior.

Typically, we observe two types of relations between given elements. First, elements that
are replicas of the same geometry should be matched to the same instance of the same template.
Second, elements that exhibit variations of a base geometry, e.g. windows with the same arch
but varying height, should be matched to different instances of the same template. In this case,
deformation parameters defining the instances will be partially the same. An intuitive approach
for detecting such relations is to compute the matching template instance for each element
independently and then detect patterns across the resulting deformation parameters. Assume
a template is parameterized with k deformation parameters. Each instance of this template is
represented as a point in a k-dimensional deformation space with nearby points representing
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instances with similar deformation parameters. In the ideal case, elements with the same geometry
will map to a single point in this space. Elements that are variations of a base geometry, however,
will map to nearby points (see Figure 5.2a). This is revealed in similarity matrices computed
based on pairwise element distances in the deformation space (see Figure 5.2, right). Elements
that are exact replicas are represented as red blocks whereas elements with partial similarities are
represented by colors closer to red.

In case of real data, however, due to noise and partial data even elements that are exact replicas
are often matched to different instances of the same template (see Figure 5.2b) or, even worse, dif-
ferent templates. As a result, similar elements map to scattered points in the template deformation
space, making it challenging to observe clear clusters.

While robust template deformation is necessary to detect element similarities, consolidating
information across similar elements improves template deformation. However, neither the
template deformations nor element similarities are known upfront. Hence, we propose a coupled
algorithm to simultaneously find the matching template instances while detecting similarities in
the corresponding deformation parameters (see Figure 5.5). We deform a set of templates to fit
the elements. We combine observations from template deformations to map each element to a
common subspace representation. Intuitively, similar elements are expected to map to nearby
points in this subspace resulting in small pairwise element distances. Using these distances as
constraints, we consistently label each element with a deformed template instance. We repeat
template deformation by consolidating data across elements matched to similar template instances.
Iterating between these steps progressively brings similar elements closer in the common subspace
and reveals clear clusters as if in the perfect input data case. Being independent of the specific
choice of the deformation model, this iterative analysis exposes which elements are exact replicas
and which share partial similarities.

5.2 Algorithm Details

We first describe the template deformation model we have adopted in our evaluations and then
provide the details of the proposed iterative approach.

5.2.1 Template Models

Buildings designed with similar architectural style or serving related functionalities often exhibit
significant similarities in their individual elements such as windows. Thus, in our analysis we use
a set of template models of such element types. Each template is equipped with a deformation
model that defines structured variations of a base geometry.

Since architectural data sets consist of dominant line features, we adopt a deformation model
that preserves the salient feature lines of the templates similar to the iWires framework [34]. In a
pre-processing stage, we extract feature lines, called wires, in each template based on the dihedral
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angles between the edges (see [34]). Each feature wire is a collection of atomic wires that can
be one of the straight line, circular, or elliptic arc types (see Figure 5.3). Each atomic wire is
defined with a set of parameters such as the length and the direction of a straight line, or the
center, radius, and the opening angle of a circular arc. Each template is parameterized with the
union of the parameters of its atomic wires.

C
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ф

α

Figure 5.3: The feature lines of the given template model are shown in red. Each feature line
consists of individual atomic wires characterized by a set of parameters. For example, circular
atomic wires are characterized by the center (C), radius (r ), mid-angle (φ), and the opening angle
(α) of the arc. We detect orthogonality, equal-length, and reflection constraints among the feature
wires of the model (right).

When deforming a template to fit a given element, our goal is to find the parameters of the atomic
wires of the template while preserving certain structural relations between them. We identify
a set of inter- and intra-wire relations characteristic to the type of templates we utilize (see
Figure 5.3). Specifically, for a compound wire consisting of several atomic wires, we identify
sets of atomic wires that have equal length. We further identify pairs of adjacent atomic wires
that are connected orthogonally. Finally, we detect planar wires where all atomic wires lie on a
common plane. During template deformation, we preserve these equal length, orthogonality, and
planarity properties of the atomic wires. In addition, many architectural elements exhibit global
reflectional and rotational symmetries. Thus, in the pre-processing stage, for each axis-aligned
template model, we detect the presence of any reflectional symmetry with respect to one of the
three axis planes and discrete rotational symmetry with respect to one of the three axes. During
deformation, we enforce the symmetric atomic wires to share the same parameters adjusted
according to the symmetry relation.

Once the parameters of each atomic wire are computed, we adopt a 3D volumetric deformation
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approach to obtain the final geometry of the template model. Specifically, we construct a regular
3D deformation grid, Vg , for the template model and sample corresponding points on the original
and the updated wires of the model. Using these correspondences as handle constraints, we solve
for the new width, height, and depth of each cell in Vg with respect to smoothness constraints on
the size of the neighboring grid cells (see [56] and [81]). Once the updated grid is computed, the
geometry of the deformed template is constructed by preserving the local coordinates of each
vertex of the model with respect to its enclosing grid cell. Such a volumetric deformation enables
us to handle templates that may not be watertight meshes.

original 
template

instances original 
template

instances

deformation
space

deformation
space

Figure 5.4: For the templates T0 and T1, we illustrate various instances (T 0
0 , ...,T 2

0 ,T 0
1 , ...,T 2

1 ) with
different parameters of the detected feature wires (shown in red). Each instance is represented
as a point in the deformation space of the corresponding template based on these parameters. A
multi-dimensional scaling projection of the deformation space of the templates is shown.

A deformed instance of a template can be represented by the collection of the parameters of its
individual atomic wires. Such a set of parameters can be used to map varying instances of a
template to its deformation space. However, having parameters that represent different quantities,
e.g. the length of a straight line and the opening angle of a circular arc, a direct comparison of
these parameters is difficult. Therefore, we instead use a geometric realization of these parameters.
Particularly, we translate each straight line such that its starting point coincides with the origin
of the Cartesian coordinate system and represent the atomic wire with its endpoint. Similarly,
we translate circular and elliptic arcs so that their centers lie at the origin. We then represent a
circular arc with the two endpoints of the arc and an elliptic arc with four points sampled at equal
angles. By stacking these points, we define a descriptor vector v for each instance of a template
(see Figure 5.4). We compare different template instances by computing the Euclidean distance
between the corresponding descriptors.

5.2.2 Template Fitting

Pre-processing of the Input. Given an input set of images I := {I1, . . . In} of a building, we
first compute the camera parameters for each image using the VisualSFM tool [115] and a 3D
reconstruction of the scene with PMVS [33], a state of the art MVS algorithm. To perform
template deformation based on salient line features of the scene, we perform standard image-
space edge detection on each individual image Ii and apply multi-view stereo matching on the 2D
edges [6]. The resulting set of 3D line segments, L 3 := {l1, l2, . . .}, drives template deformation
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by establishing correspondences between these segments and the feature wires of templates.

Our goal is to detect geometric similarities between the elements of a building. Even though
there exist automatic facade parsing methods exploiting the presence of horizontal and vertical
splitting lines and 2D regular grids (see [76]), we observe that such methods fail to identify the
elements of more complex architectural scenes. Therefore, we instead adopt the semi-automatic
approach discussed in Chapter 4 which requires the user to only roughly mark an element of
interest, e.g a window frame, in one of the input images and automatically detects its repetitions.
However, standard image-based similarity methods might fail to detect elements exhibiting strong
variations or in presence of large occlusions and appearance changes. In these cases, we revert to
user input to mark the missing elements.

We identify the 3D points whose projection falls into each marked or detected image region and
fit a bounding box to these points. In the remaining of the text, we refer to each such subset of
the point cloud as an element. We align the orientation of the bounding boxes of the elements to
the common up direction of the MVS reconstruction (see [117]). In the rest of the pipeline, we
consider the elements to be provided as input and do not assume any prior information obtained
through the element selection process.

Template Deformation. For a given template T j and an element si , our goal is to compute the
deformation parameters, di

j , that define the instance of T j that match si as closely as possible.
We first apply a similarity transformation to T j that aligns the bounding boxes of T j and si .
We axis-align all templates in the pre-processing stage so that the y-axis corresponds to the up
direction. We compute correspondences between the axes of the element and template bounding
boxes by matching their up directions.

Once T j and si are roughly aligned we setup an optimization to compute di
j . Our goal is to align

the corresponding feature lines of T j , i.e. wires, and si . Thus, we sample 3D points both on the
feature wires of T j and the 3D line segments falling inside the bounding box of si to produce the
sample point sets Q j and Pi respectively. We establish 3D correspondences between these point
sets and minimize the distance between them:

c(di
j ) = ∑

q j∈Q j

‖q j −pi‖2 + ∑
p′

i∈Pi

‖p′
i −q′

j‖2, (5.1)

The first term measures the distance from the template to the element where q j and pi are
corresponding points in Q j and Pi respectively. The second term measures the symmetric distance
from the element to the template where p′

i ∈ Pi and q′
j ∈Q j denote the correspondences.

We solve for di
j by minimizing the following energy:

E f i t (T j ,di
j , si ) = c(di

j )+αcR (di
j )+ cW (di

j ), (5.2)

where cR (di
j ) is added as a regularization term (α= 0.01) to minimize the difference between the
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current and initial sample points on the feature wires of the template. The term cW (di
j ) is used to

preserve the relations, e.g. planarity, orthogonality etc, between the wires of T j (see [34]. We
solve this optimization iteratively, updating the sample point set Q j and the 3D correspondences
at each iteration. We use the Ipopt package [110] to solve the non-linear optimization.

Having defined how a desired template is deformed to fit an element, our next goal is to identify
the best fitting template instance for each element as described next. We note that this analysis is
independent of the adopted deformation model.
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Figure 5.5: Given a MVS reconstruction of a building, we utilize a set of templates to match its
elements, i.e. windows. We combine observations from template deformations via a subspace
analysis to extract element relations. Using these relations as constraints, we label each element
with a deformed template instance (same instances are denoted in same color). We repeat template
deformation by consolidating data across elements matched to similar template instances. This
analysis reveals elements that are identical (represented as red blocks in smoothness weight
matrices) or share partial similarities (highlighted in green on the matching templates).

5.2.3 Coupled Template Matching and Deformation

Given a set of elements S := {si } and a set of templates T := {T j }, our first goal is to label
each si with the tuple (T i ,di ) where T i is best the matching template and di represents the
deformation parameters of the fitting instance. We then aim to detect patterns in these resulting
deformation parameters that represent geometric similarities between the elements. Once detected,
such similarity relations allow to consolidate data across multiple elements. This consolidation
progressively improves template deformation and enables extraction of more reliable similarities.

Subspace Analysis. We begin our analysis by deforming each template T j to fit each element si

to yield the deformation parameters di
j :

di
j = argmin

∑
i

E f i t (T j ,di
j , si )+Esi m , (5.3)

where E f i t (T j ,di
j , si ) measures how well template T j fits si as explained in the previous section.
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Esi m measures the difference between the deformation parameters of T j detected as being similar
across multiple elements and will be discussed shortly. Initially Esi m evaluates to 0 since we
assume no prior knowledge about element similarities.

The computed template deformations provide observations about the geometry of the given
elements. We represent such observations in a multi-layer graph M where each individual graph
layer, G j = (S,E j ,W j ), encodes the deformation parameters obtained by fitting the template T j

to each element (see Figure 5.5). Elements are represented as nodes in each graph layer where
the edges E j between the nodes are weighted by the vector W j computed based on the distances
between the corresponding deformation parameters. An edge ei k ∈ E j connecting the nodes si

and sk is weighted by:

wi k = e−D(Ti
j ,Tk

j )/mD ·E (i , j )
f i t , (5.4)

where D(Ti
j ,Tk

j ) measures the distance between the instances of T j that are matched with
si and sk . mD denotes the maximum of such distances and is used for normalization. As
discussed in the previous section, a direct comparison between the deformation parameters is
challenging as each of these parameters denotes a different quantity. We instead measure the
distance between two instances of a template by computing the Euclidean distance between
their descriptor vectors vi

j and vk
j . We multiply the edge weights with the template fitting errors,

E (i ,k)
f i t = min(E f i t (T j ,di

j , si ),E f i t (T j ,dk
j , sk )), to diminish the effect of possible local minima

resulting from imperfect template matches, e.g due to noise.

Each graph layer in M captures different observations of the relations between the elements
obtained from the corresponding template deformations. Our goal is to combine the information
revealed at each layer of M to extract a set of consistent relations. We achieve this goal by
adopting the subspace analysis approach of Dong et al. [26] which uses ideas from spectral
clustering theory. This approach first computes a subspace representation of each graph layer.
This is achieved by computing the normalized Laplacian matrix, L j , of each graph layer j :

L j = D−1/2
j (D j − A j )D−1/2, (5.5)

where D j and A j denote the degree and the adjacency matrices of the graph at layer j respectively.
A meaningful subspace representation U j of the vertex connectivity at each graph layer is
then represented by the k−dimensional spectral embedding of the graph, i.e., the smallest k

eigenvectors of the corresponding graph Laplacian [66]. Ideally, k represents the ground truth
number of clusters between the graph vertices and this k-dimensional embedding enforces the
clusters to become more visible. However, the information about the number of element clusters
is not available in our case and thus we choose the value of k based on the eigengap heuristic.
We select the first k eigenvalues where the gap between the consecutive eigenvalues (ek+1 −ek)
is maximized. While this low dimensional subspace information is traditionally used for finding
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clusters of the graph vertices, it is also useful for analysis tasks as in our case.

Once a subspace representation U j is computed for each graph layer, the goal is to effectively
combine these subspaces into a common representation U . U is desired to be close to all the
individual subspaces and at the same time preserve the information about vertex connectivity
in each graph layer. Closeness between U and each U j is measured as the squared projection
distance between them [26]:

d 2
pr o j (U , {U j }) =

N∑
j=1

d 2
pr o j (U ,U j ), (5.6)

where N denotes the number of graph layers. We refer the reader to the work of Dong et al. [26]
for a more detailed discussion about the projection distance between two subspaces. At the
same time, we want U to preserve the information about vertex connectivity in each graph layer.
This is achieved by defining a trace minimization problem by drawing insights from the spectral
clustering theory [79]:

dtr =
N∑

j=1
tr (U T L jU ) s.t.U T U = I , (5.7)

where L j is the graph Laplacian at layer j . Thus, finding a common representative subspace U

accounts to solving the following minimization problem:

U = argmin αd 2
pr o j (U , {U j })+dtr , (5.8)

where α (α= 0.5 in our examples) balances the trade-off between the two terms. As discussed
by Dong et al. [26], it turns out that the solution U of the above minimization problem can
be obtained by first forming a common graph Laplacian L = ∑N

j=1 L j −α∑N
j=1 U jU T

j and then
defining U as the smallest k eigenvectors of L. Once computed, each element is represented
in this low dimensional subspace U . This representative subspace summarizes the information
captured in each graph layer and reveals the intrinsic relations between the elements that resemble
their similarities. However, these relations do not directly map to actual labels of the elements.
Hence, in a subsequent step, we solve a labeling problem by incorporating the relations captured
in U as constraints.

Labeling problem. Each element si is represented as s′i in the common low-dimensional space
U obtained from the multi-layer graph M . Elements that share geometric similarities appear as
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nearby points in U . Thus, pairwise element distances in this space (see Figure 5.5) provide an
indication of their degree of similarity. Our goal is to find a consistent labeling for elements that
have small pairwise distances.

Recall that we want to label each element si with a tuple (T i ,di ) consisting of both the matching
template and the deformation parameters defining the matching instance. Even though we have a
set of discrete labels with respect to the template type, the deformation parameters are defined in
a continuous deformation space. A naive approach to discretize the space of possible labels is to
represent each template deformation space with a sparse set of samples. However, it is challenging
to obtain a good coverage of the large deformation space with a sparse set of samples while
ensuring the samples are sufficiently close to the instances matching with the given elements. On
the other hand, the deformation parameters obtained by fitting templates to elements provide a
good set of initial labels. Therefore, we formulate this labeling problem as a Markov Random
Field (MRF) optimization [24] where the label set L = {(T j ,di

j )} consists of the current set of
template instances obtained by fitting each template T j to each element si . (We choose the best 5
template instance for each element in our experiments.) The MRF optimization consists of data,
smoothness, and label costs:∑

si

Ed (si ,L(si ))+ ∑
si ,sk

αi k Es(si , sk ,L(si ),L(sk ))+∑
T j

λT j EL . (5.9)

The data term, Ed (si ,L(si )), measures the cost of fitting the template instance defined by the label
L(si ) to the element si . The smoothness term, Es(si , sk ,L(si ),L(sk )), evaluates the consistency of
the labeling of each pair of elements. If two labels L(si ) = (T i ,di ) and L(sk ) = (T k ,dk ) belong
to the same template (T i = T k ), the smoothness term measures the distance between the two
corresponding instances of the template, D(Ti ,Tk ). Otherwise, a fixed smoothness cost (two times
the maximum distance between any two instances of the same template in our experiments) is
assigned. The smoothness weights αi k = e−‖s′i−s′k‖2/σ2

are determined from the distances between
the elements mapped to the representative subspace U . Intuitively, similar elements have small
pairwise distance in U resulting in high smoothness weights (revealed as colors closer to red
in pairwise smoothness weight matrices shown in Figure 5.5 and 5.12). These elements are
expected to be assigned to similar labels, i.e. instances of the same template. The constant σ> 0

determines how rapidly the smoothness weight drops with increasing pairwise element distances
and is set to 0.1 in our experiments. The last term in Equation 5.9 penalizes each unique template
that appears in the final labeling. Specifically, we group the candidate labels coming from the
same templates into subsets and a fixed label cost EL (equal to 1/5th of the average data cost in
our experiments) is induced if at least one label is used from such a subset. The indicator variable
λT j is set to 1 if an instance of the template T j appears in the final labeling.

Due to noise and partial data, elements that are exact replicas often map to scattered points in
the representative subspace U instead of a single point. The smoothness term progressively
enforces these elements to be assigned to the same label and thus brings them closer. This
behaviour is revealed as the formation of red blocks in the pairwise smoothness matrices in the
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final iterations of our algorithm (see Figure 5.12). If there are similar templates, similar elements
might get assigned to instances of different templates. The label cost favors the use of as few
unique templates as possible and thus enables a consistent labeling. Both smoothness and label
costs enforce the selection of fewer templates. Hence, elements that exhibit variations of a base
geometry are matched to different instances of the same template.

Similarity Detection. The formulated MRF optimization assigns a label to each element con-
sisting of the matching template and the deformation parameters of the fitting instance. We
evaluate these labels to extract a set of similarity relations R = {r } between the elements. In
particular, if elements si and sk are matched to two instances of template T j , we define the
relation r = (si , sk ,c j ,T j ). c j is a binary vector which contains a 1 for the descriptor components
of these template instances that have a Euclidean distance below a certain threshold (0.5% of
the length of the diagonal of the bounding box of the input reconstruction). These components
indicate partial similarities between si and sk with respect to template T j . A vector c j consisting
of all ones (c j = 1), on the other hand, indicates that si and sk are exact replicas. In this case, we
define an additional relation for these elements for all other templates with c j = 1.

Once we extract a set of relations, R, we repeat template deformation while using these relations
as additional constraints. When deforming a template T j , we minimize the energy given in
Eqn. (5.3):

di
j = argmin

∑
i

E f i t (T j ,di
j , si )+ ∑

(r )∈R
Edi st (r )︸ ︷︷ ︸
Esi m

, (5.10)

where Edi st (r ) = cT
j (vi

j −vk
j )2 for r = (si , sk ,c j ,T j ) measures the difference between the coupled

descriptor components of the instances of T j that fit si and sk . This coupling consolidates data
across multiple elements by enforcing the coupled atomic wires of a template to deform similarly.
With the new deformation parameters, we update the multi-layer graph M and repeat the subspace
analysis and the MRF optimization.

We iterate between these steps until no change is observed in labels of the elements (typically
5-6 iterations). Intuitively, at each iteration we improve template fitting by consolidating data
across multiple elements via the detected similarity relations. This creates an enhanced candidate
label set for the subsequent MRF optimization. In addition, potential element clusters in template
deformation spaces become clearer as similar elements are progressively pulled closer (see
Figure 5.6).

Extension to Large Template Sets. When performing the proposed coupled analysis, it is
possible to consider every template-element pair for deformation, especially if the number of
utilized templates is low. However, as the size of the template set grows, a pre-organization of
the templates becomes necessary. This organization not only reduces computational complexity
but also provides high-level relations among the templates that can be used to guide the template
matching process.
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Figure 5.6: We propose an iterative approach to simultaneously find the matching template
instances of a given set of elements and compute similarities among them. Intuitively, at each
iteration we improve template fitting by consolidating data across multiple elements via the
detected similarity relations. Thus, potential element clusters become clearer as observed by the
formation of red element blocks in the smoothness matrices.

In our experiments, we propose a simple strategy to group the templates based on their defor-
mation capabilities. We deform each pair of templates Ti and T j to fit the other and define a
pairwise distance measure equal to the maximum of the resulting fitting errors. When measuring
the fitting errors, we only use the correspondences between the outer wires of the templates
which are visually more discriminating compared to the inner substructures. We then cluster
the templates based on these pairwise distances. For window templates, this simple strategy
successfully distinguishes between circular, arch, and rectangular windows but leads to confusion
between arch and triangle-top windows. We revert to user input to regroup the few misclassified
templates resulting in four groups of templates (see Appendix B). We note that it is possible to
propose a different organization of the templates, e.g based on architecture style.
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Given a grouping of the templates, for each element we find the best fitting group and deform only
the templates in this group. Initially, for each element-template pair, we compute a fitting error
after aligning their bounding boxes via a similarity transformation. We identify the matching
template group of an element as the group with the minimum average of such fitting errors.
Since each group of templates are deformed only to a subset of the elements, we perform the
subspace analysis independently for each such subset by combining the observations from the
corresponding template deformations. For every pair of elements mapped to the same subspace,
we compute a pairwise smoothness weight as explained before. For any pair of elements mapped
to different subspaces, we set the corresponding smoothness weight to 0. We note that each
element is represented by normalized coordinates when mapped to a subspace. Hence, the
smoothness weights between the elements mapped to different subspaces are comparable. During
labeling optimization, we construct a global candidate label set for all the elements irrespective
of their matching template groups. Thus, an element may possibly be matched to a template
instance that does not belong to its current matching group. This results in an update of the
matching group of the element in the next iteration of the algorithm. This update mechanism
enables to recover from any errors that might occur during the initial group matching.

5.3 Evaluation

We evaluate our algorithm on several synthetic and real datasets with varying complexity and
data quality. In our evaluations, we focus on window elements as these are the most common
element type that exhibit full and partial similarities. We use a template set consisting of 60

window models downloaded from the Digimation Model Bank and Trimble 3D Warehouse. The
templates and their detected feature wires can be downloaded from the following link (removed
for the review process). We classify the templates into 4 groups of arch, rectangle, triangle-top,
and circular windows (see Appendix B).

We demonstrate how our algorithm performs when changing the amount of variation across input
elements, the number of utilized templates, and the data quality. In order to assess the effect of
each factor independently, we perform some of these evaluations on synthetic data annotated
with ground truth 3D line features. We next discuss each of these experiments in detail.

Effect of element deformations. One of the main steps of our algorithm is to perform a labeling
optimization that matches each element to a template instance. This optimization is driven by
data and smoothness terms. While the data term evaluates the individual label assignments, the
smoothness term favors similar labels for similar elements. Due to this coupling, the amount of
variation among the elements plays a significant role in determining the final label selection. We
illustrate this effect on a set of synthetic elements created by gradually increasing the variation
among them (see Figure 5.7). When using a set of three templates including a template capable of
capturing all of these variations, all elements are labeled with different instances of this template
(Figure 5.7a), i.e. the smoothness term has no effect. When we remove this template, however,
none of the remaining templates is capable of perfectly capturing the element variations and the
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labeling is affected by the smoothness relations. We first consider the first six elements, where
four of them prefer the first template based on data term only. Even though the fifth and sixth
elements prefer the second template based on data term, the smoothness relations among the
elements enforce them to pick labels from the first template (Figure 5.7b). Nonetheless, addition
of two more elements that also prefer the second template individually is perceived as a strong
indication that the second template is also a likely assignment. Thus, the last three elements are
now assigned to labels from the second template (Figure 5.7c).

elements

templates

data term only

templates

data term only

with smoothness term

templatestemplatestemplates

templates

with smoothness term

data term onlydata term onlydata term onlydata term onlydata term onlydata term only

data term only

with smoothness term

templatestemplatestemplates

(a)

(b)

(c)

Figure 5.7: Due to the coupling introduced by the smoothness term, the amount of variation
among the elements affects the final selection of template instances. For different set of templates
(with feature wires shown in red) and elements, we show the selected template instances once
based on data term only and in the second row additionally considering the smoothness term.

Effect of number of templates. A unique feature of our algorithm is to combine observations
from multiple template deformations. Since each template represents variations of its base
geometry, combining observations from multiple templates leads to a better coverage of the
template deformation space. Moreover, templates deform similarly to fit similar elements. Thus,
regardless of their suitability, each template contributes to detection of element similarities. We
illustrate this effect on a synthetic house model annotated with ground truth 3D line features.
This model has two types of windows showing variation in height and width respectively (see
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input model (a) template set size: 60 (b) template set size: 10 (c) template set size: 1

Figure 5.8: We show the selected template instances for a synthetic house model (consisting of
38 narrow triangle-top, 4 wide triangle-top, 23 long arch, and 23 short arch windows) when using
different number of templates. For each case, we also show the color-coded smoothness matrices
and the partial similarities detected between the elements (highlighted in green). Note that the
removal of the triangle-top template selected in (a) results in a selection of another triangle-top
window in (b).

Figure 5.8). We run our algorithm on this model using an increasing template set size of 1, 10

(selected templates are shown in Appendix B), and 60 (templates organized as four groups). We
show the pairwise element smoothness weights computed in each case in color-coded matrices.
For each block of identical elements, the side color bars denote the color of the corresponding
matching template instance. We show the partial similarities detected between such template
instances in a graph by highlighting the coupled parts of templates in green. We observe that
even a single template is capable of distinguishing the variation among the elements resulting
in the selection of four distinct template instances (Figure 5.8c). With additional templates,
the two window types are also identified resulting in the selection of two instances of each
template (Figure 5.8b). When using a grouping among the templates (Figure 5.8a), the two
type of window elements are initially matched to different template groups which results in no
smoothness relation between them, i.e. blue blocks in the corresponding smoothness matrix.
With a single rectangular template, however, the similarity between the height of the triangle-top
and long arch windows is reflected as a reasonably high smoothness weight, i.e. orange block in
the corresponding matrix.

Effect of data quality. The quality of the detected feature lines in the input has a direct impact on
template deformations. We analyze this effect by comparing the performance of our algorithm on
synthetic data using ground truth feature lines (Figure 5.8a) and a MVS reconstruction obtained
from the rendered images of the model (Figure 5.9). We observe two main sources of error
that potentially influence our results. First, due to the challenges in correspondence search,
MVS reconstructions cause a general degradation in data quality which might lead to failure in
capturing fine details. Even though our algorithm selects the same templates as in the ground
truth case, it fails to capture the subtle variation in the width of the two instances of triangle-top
windows (Figure 5.9a). Second, factors such as large occlusions affecting specific regions of the
input result in local degradation in data quality. Thus, when we place a large tree model in front
of the house, our algorithm cannot recover the correct template assignments for the windows
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occluded by this tree (Figure 5.9b).

(a)

(b)

input images �tted template instances smoothness matrix detected similarities

Figure 5.9: We evaluate our algorithm on MVS reconstructions obtained from rendered images
of a synthetic model. Due to loss of fine details, we cannot recover the subtle variation in width
of the triangle-top windows in blue (a) and the occlusion by a large tree results in wrong template
assignments for some elements (b).

Comparison to naive clustering. Due to noise and partial data, an independent analysis of each
element often results in the selection of different templates for elements that are derived from
the same base geometry (Figure 5.10a, left). Even if we annotate the correct template selection,
elements that are exact replicas are mapped to scattered points in the template deformation
space. Thus, standard clustering algorithms such as k-means fail to identify the correct element
clusters (Figure 5.10b, left). Our coupled analysis, however, progressively consolidates data
across elements via the detected similarities. This coupling brings similar elements closer in
the template deformation space and thus reveals distinct clusters (Figure 5.10b, right). For this
dataset, compared to ground truth clustering by visual inspection, the clustering of our algorithm
achieves a mutual information score [109] of 0.876 with one mislabeled element due to lack
of sufficient 3D line features (see Figure 5.11), whereas the clustering based on independent
analysis has a score of 0.468.

Performance on real data. We evaluate our algorithm on various real datasets with different
architecture style and varying complexity (Figure 5.5, 5.11, and 5.12). Table 5.1 shows the
statistics of our algorithm on each dataset. We now summarize our main findings, while we refer
the reader to Appendix C for a more complete set of results.

We introduce a general definition of similarity by discovering patterns in the deformation modes
of the template instances fitting a set of elements. Our algorithm not only handles elements
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Figure 5.10: (a) Individiual template fitting for a set of elements results in the selection of 5
different templates whereas our algorithm assigns the elements to 5 different instances of the
same template. (b) Given a template selection, we visualize each element in the low-dimensional
deformation space of the template (elements that are exact replicas are shown in same color)
using the deformation parameters obtained by individual fitting vs. our algorithm. The clusters
generated by the k-means (k=5) algorithm are indicated by different symbols.

that are replicas of the same geometry but also detects similarities across elements that exhibit
partial variations. Figure 5.11 and 5.12 illustrate many partial similarities detected among the
elements which would have been difficult to capture otherwise. For example, for Dataset 1,
our algorithm discovers 5 instances of the same template for 30 window elements (Figure 5.11)
whereas individual template fitting for each element results in the selection of 5 different templates
(Figure 5.10).

We perform coupled template matching and similarity detection solely based on the deformation
parameters of the templates. We make no assumption about the presence of any specific type
of regularity or spatial arrangement such as 2-dimensional grids. Yet our analysis successfully
detects similarity relations between elements that are rotationally symmetric (Figure 5.12, Dataset
7), arranged as 1-dimensional grids (Figure 5.12, Dataset 6), and located across different facades
of a building (Figure 5.12, Dataset 5). Even though noise in MVS reconstructions makes it
difficult to initialize transform domain grid fitting as proposed by Pauly et al. [84], matching
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Figure 5.11: Color bars at the sides of the final smoothness matrix denote the color of the
fitting template instances of the corresponding block of identical elements. We show the partial
similarities detected across such element blocks in the accompanying graph by indicating the
identical parts of the matching template instances in green.

template instances as detected by our algorithm enables the discovery of grid-like spatial arrange-
ments between the elements. We use such relations to spatially snap the template instances in our
results.

Ni Ns Ne Td Tc Ti

Building 1 60 3 39 10 2 3
Building 2 120 7 32 8 3 7
Building 3 160 8 32 12 4 10
Building 4 299 10 99 22 7 9
Building 5 70 13 25 7 5 9
Building 6 129 6 57 13 3 4
Building 7 126 7 17 7 4 8

Table 5.1: The table shows the number of input images (Ni ), the number of user selected elements
(Ns), the total number of detected elements (Ne), the numbers of templates selected by the
independent analysis (Td ) and with the coupled analysis (Tc), and the total number of template
instances discovered (Ti ).

As discussed previously, MVS reconstructions often suffer from general degradation in data
quality which might lead to failure in capturing fine details, e.g. in the substructures of the
elements. As this degradation is typically consistent across different elements, our coupled
analysis is still able to recover the correct similarity relations among the elements. However,
missing details or the lack of a more suitable template might result in selection of a template
different than a user-intended one. For example, for Dataset 4, the closest available template has
been selected to capture the two-arch structure of the windows shown in green (see Figure 5.12).
As the similarity relations among the elements have been correctly identified at this stage, it is
straightforward to introduce user interaction possibilities such as providing a new template. In
this case the user-provided template will be deformed to the given elements while preserving the
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Figure 5.12: For each example, we show the smoothness matrices in the first (top left) and final
(bottom left) iterations of our algorithm. Color bars at the sides of the matrices denote the color
of the matching template instances of the corresponding block of identical elements. Partial
similarities detected across element blocks are shown on the corresponding templates in green.
We denote the elements matched to wrong template instances with dotted circles.
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already detected similarity relations between them.

Even though our coupled analysis successfully recovers the full and partial element similarities
in most cases, severe local degradations in data quality, e.g. due to large occlusions, may result in
failures. In our examples, we indicate such erroneous elements by dotted ellipses (Figure 5.11
and 5.12). Such errors occurred due to insufficient 3D lines, which in turn prevented reliable
template deformation. In Figure 5.13, we demonstrate two challenging cases, where almost half
of the indicated windows are occluded. Even though our algorithm identifies the correct template,
it discovers the wrong (shorter) instance. It is possible to augment our analysis with additional
priors to resolve such failures. Possible solutions include incorporating smoothness constraints
among elements arranged in a grid (Figure 5.13, top) or down weighting the distance from the
template to the element when computing the fitting error (Figure 5.13, bottom). Automatic
detection of such large occlusions, e.g. by analyzing the point distribution in the neighborhood of
elements is an interesting future direction.

without additional prior with additional prior

without additional prior with additional prior

Figure 5.13: Due to the lack of sufficient 3D lines resulting from large occlusions, our algorithm
fails to match the indicated windows (in orange) to the correct template instances. It is possible
to augment our analysis with additional priors to resolve such failures. We show the element
smoothness matrices with and without use of such priors.

5.4 Closing Remarks

We have presented an approach to capture patterns among a set of elements by using deformable
template models. Central to our approach is a coupled template matching and deformation
analysis. This analysis simultaneously identifies the best fitting template instance of each element
and detects element similarities by detecting patterns in the deformation modes of the matching
template instances. Even though this analysis is flexible enough to incorporate additional priors,
we have assumed no additional information to demonstrate the effectiveness of the approach. Our
analysis is independent of the choice of the deformation model and thus can be adopted to other
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problem settings. Defining other context-specific templates, for example for biological datasets,
and performing a similar coupled analysis is an interesting area for future research.

When using templates for shape analysis, we are faced with a fundamental tradeoff. On the one
end of the spectrum, static templates that can only be aligned rigidly with the data, simplify the
matching process, but require a potentially prohibitive number of examples to adequately sample
the space of variations observed in acquired data. On the other end of the spectrum, templates
based on generic or low-level deformation models [83] have a larger number of parameters
(e.g. each vertex position can be an unknown) and are prone to overfitting.

Our approach lies in the middle and employs a high-level, structure-preserving deformation
model that directly encodes geometric properties of the variations observed in the data. The
self-similarities detected by our coupled analysis provides valuable semantic information that can
be useful for various structure aware editing tasks.

We believe that extending our coupled analysis to discover geometric similarities between
the elements of different buildings can be considered as a first step in automatic detection of
architectural style. The geometry of the individual elements of a building is one of the key aspects
that make up its style and our analysis reveals geometric similarities between the elements of
a building. It is worth exploring other geometric properties that are characteristic of certain
architecture styles in the deformation patterns of the templates. In fact, the notion of architecture
style can also be considered when constructing the template database. In case target data sets
are expected to follow a unique architecture style, using template models revealing this style can
increase the robustness of our coupled analysis. The notion of style can further be explored to
define deformation priors for template models. For example, certain architecture styles impose
constraints on the ratio of the width and height of its windows which can be incorporated in the
template deformation process. While we have only focused on geometric similarities, enriching
the templates with annotations, e.g. depicting their architecture style or material properties, and
incorporating this information during template matching is also an interesting opportunity.

Finally, In our evaluations, we have utilized templates downloaded from online shape repositories
which we grouped based on their geometric similarities. Considering a more sophisticated
organization of the template set, e.g. a hierarchical grouping, is an interesting future direction.
Furthermore, exploring the style of the templates in template organization can be helpful for
specific analysis tasks.
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In a major part of this dissertation, we have con-
centrated on shape analysis and processing algo-
rithms for the purpose of digitizing the physical
world with a specific focus on 3D reconstruction
of urban environments. Concurrent to the efforts in
3D geometry analysis and reconstruction, we are
recently witnessing a revolution in digital manufac-
turing with the advent of accessible 3D fabrication
techniques such as 3D printing, laser cutting, and

milling. These recent advances in rapid prototyping technologies together with the advanced
digitization techniques have given rise to a cyclic pipeline linking the physical and the digital
worlds. On one hand, we strive to create accurate digital replicas of real-world objects; on the
other hand, there is a growing user-base in demand of manufacturing the existing digital content.
Among the various applications of 3D fabrication, we can list rapid prototyping for research
purposes, patient-specific implant and medical device production, manufacturing custom-fit shoes
for athletes, as well as domestic and hobbyist use.

In the previous chapters, we have emphasized the importance of shape understanding in digiti-
zation of the physical world both for improving the accuracy of the reconstruction process and
providing semantic information related to the acquired digital content. In this chapter, we extend
our findings to underline the benefits of shape analysis for the task of recreating the physical
world from the available digital data. Each manufacturing device comes with technology-specific
limitations and thus imposes various constraints on the digital models that can be fabricated. Thus,
a good level of shape understanding is necessary to optimize the digital content for fabrication.
In the context of related shape analysis, Xu et al. [121] analyze input models based on local
slippage analysis to assign appropriate joint types and support joint aware deformations. Mitra et
al. [73] analyze static 3D meshes of mechanical assemblies to understand their part interactions
and resulting inter-part motion possibilities. Several research efforts we have recently seen
towards extending these analysis tools to design physical prototypes include optimizing geometry
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towards creating functionally valid furniture [107]; improving stability and robustness of printed
models with thin structures [104]; creating complex assemblies of planar intersecting pieces [97];
creating assembly-free printable articulated models [13]; and decomposing large models into
smaller parts that can be printed and assembled [65]. These efforts focus on generating static
models. In contrast, we showcase the importance of shape understanding in the specific problem
domain of creating moving mechanical figures that recreate a target motion [15]. In particular, our
goal is to design and fabricate mechanical humanoid figures that mimic actions such as walking
and dancing.

There are various reasons for focusing on the de-
sign of moving mechanical figures. To begin with,
mechanical automata which are machines that use
a combination of interconnected mechanical parts
(e.g. gears, pulleys) have attracted attention of hu-
mans since antiquity due to their ability to convert
a driving force into a specific target motion. A
wide variety of such machines have been created
for many different purposes (e.g., clocks, music boxes, fountains). Automata designed to look like
human figures performing every-day actions like walking, waving, etc. are especially popular. Fa-
mous historical examples include Leonardo Da Vinci’s life-sized armor-clad robot from 1495 that
could sit, stand and move its arms, as well as the Draughstman-Writer of Henri Maillardet from
the late 18th century, which was the primary inspiration for the automaton in Brian Selznick’s
book, The Invention of Hugo Cabaret. Today, wind-up toys in the form of characters are the most
common types of mechanical figures. Our longstanding fascination with humanoid automata
likely stems from their ability to produce surprisingly complex, lifelike motions from simple
input forces through purely mechanical means.

Despite their widespread appeal, the design of automata is currently restricted to a very small
group of experts. Consider the challenges involved in creating a mechanical figure that performs
a specific target motion. First, a designer must choose a set of mechanical parts and decide
how to connect the parts together to approximate the prescribed motion, traditionally called the
conceptual design phase. Creating this conceptual design typically requires extensive knowledge
of different part types and how part interactions transfer movement through the assembly. Next,
in the dimension synthesis phase, the designer must determine the appropriate part parameters
(e.g., gear radius) to best match the target motion. This step may require simplifying the target
motion so that it falls within the range of achievable motions for the set of parts. The final step is
to arrange the parts spatially to create a valid physical realization of the automaton. Only a few
people have the necessary skills and expertise to perform all of these design tasks.

The attractiveness of these mechanical figures and the challenging design process creates the
need for computational tools to automate the design process to make them accessible for casual
users. Previously, there have been research efforts focusing on automating different phases of the
mechanism design process. To automate the conceptual design phase, previous work attempts
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to decompose specific functional goals into smaller subgoals and match them to a database of
common building block mechanisms ([19, 93, 44] and references therein). As for the dimension
synthesis stage, a common approach is to identify the relevant spatial constraints between parts
and satisfy these constraints to compute part positions and orientations [4, 51]. Encoding the
mating and alignment relations between different parts of an assembly using a graph of geometric
constraints [85, 43] is also a common practice.

Only in the last few years, we have seen approaches that focus on the mechanism design process
as a whole. In recent work, Zhu et al. [127] present a system for producing tethered mechanical
assemblies that approximate user-specified input motions. In such assemblies, characters or
objects (represented as rigid feature components) are driven from below by mechanisms hidden
inside a box. These tethered designs drive each rigid feature component with one or two
mechanical parts, allowing the component to perform a simple rotation, translation or certain
combinations of two rotations/translations along orthogonal planes or axes. Concurrently to our
research efforts, Coros et al. [21] present an interactive system for designing animated mechanical
characters which supports complex target motions that are specified by sketching planar motion
curves. In this system, certain rigid connections between different parts of the mechanism are
required to be provided as input, however, to propagate the motion through the whole assembly.

Development of similar computational tools to aid users in mechanism design requires a thorough
understanding of the characteristics of desired target motions. Further the requirements and
limitations of mechanical components need to be carefully analyzed. Thus, in this chapter, we
demonstrate how shape understanding and geometry processing can be uitilized to build a fully
automated approach for generating mechanical figures that approximate a given target motion.

6.1 Overview

Our goal is to present an automated approach for generating mechanical figures that realize target
motions. Before providing the details of our proposed approach, we first describe our analysis
results on the characteristics of the target motions. We have made specific design decisions
considering these characteristic features of the target motions.

As input we consider an animation sequence for an articulated 3D humanoid figure (e.g., from a
motion-capture database) that specifies the desired motion. Since mechanical automata typically
perform repetitive actions, we assume that the input motions are roughly periodic (e.g., a walk
cycle, an arm waving back and forth). Each bone of a human figure performs an oscillating
motion, i.e. a rotation that repetitively changes direction, during such a periodic motion cycle
(see Figure 6.1). Further, the bones of a limb of the figure are connected via joints forming
a kinematic chain. In other words, the motion of a specific bone is affected by the motion of
its parent bone. An important observation we make is that the oscillation of each bone in a
kinematic chain possibly has different phases and frequencies. For example, in running motions,
the oscillations of the upper and lower arms are typically out-of-phase, i.e. they are expected to
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Figure 6.1: When performing a periodic motion such as walking, each bone of a humanoid figure
undergoes an oscillation, possibly with different phase and frequency.

change rotation direction at different time frames and rotate with different angular speeds.

Our designs represent the bones of the input figure with rigid links connected by revolute joints.
Mechanical figures are often driven from a single input crank such as a constant speed motor
to facilitate practical use. Thus, the driving force of the mechanism is a constant angular-speed
rotation. The automaton is required to convert the crank rotation to oscillatory movements that
are propagated to the appropriate links in the figure. More importantly, this propagation should
generate oscillations with different phases and frequencies for different body parts, which greatly
expands the expressive range of the designs.

gears pulleys four-bar linkage bevel gears

Figure 6.2: The basic components of our mechanical designs include gears, pulleys, and four-bar
linkages.

Standard mechanical components most of us are familiar with include gears and pulleys which
are capable of propagating uniform rotations only. In order to realize the conversion from
an input rotation to an oscillation, we use another common mechanical component called the
four-bar linkage (see Figure 6.2). As the input crank of the linkage is rotating uniformly in one
direction, the output crank oscillates with a non-linear angular speed given certain constraints
relating the bar lengths are satisfied [68]. The four-bar linkages generate oscillating motions with
continuous acceleration rather than abrupt changes in direction that can put significant stress on
the components.

We introduce a mechanical module composed of these standard components, i.e., gears, pulleys,
and four-bar linkages, and is capable of converting a uni-directional rotation to oscillation. We
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further ensure such modules can create out-of-phase oscillations when linked along a kinematic
chain. Since all of these components are planar mechanisms, they can only generate planar
motions. This planarity constraint, however, enables us to fabricate these components with a laser
cutter. Our goal is to generate freestanding automata where the mechanisms that produce motion
are attached directly to the links of the figure. While this property enables the generated automata
to move more freely, it also imposes additional constraints on the layout of the mechanical
components. Each link is required to be long enough to accommodate the components attached
to it. In addition, since each link represents a bone of the input figure, the relative lengths of the
rigid links should preserve the proportion of the corresponding bone lengths.

We propose a two-stage strategy to automatically design mechanical automata that satisfies all the
requirements listed above. First, in a motion approximation stage, we convert the input animation
sequence into a mechanically realizable motion based on the constraints imposed by the parts
(gears, pulleys and four-bar linkages) in our designs. Then, in the layout stage, we solve for the
parameters (e.g., tooth counts, link lengths) and spatial layout of the mechanical parts to produce
the desired motion of each link.

6.2 Algorithm Details

6.2.1 Mechanical Design

saggital

coronal

transverse

revolute joint
head-shoulders-
torso-hips
left arm
right arm
left leg
right leg

The input to our system is an animation sequence of an
articulated 3D human figure. From this animation, our
system automatically produces a humanoid automaton
design that approximates the input motion. Our design
represents the bones of the input figure with rigid links.

Since many human motions are characterized primarily
by the movement of the limbs, we connect the arm and leg
links with revolute joints to create points of articulation
at the shoulders, elbows, hips and knees of the automaton.
We orient these joints such that the motion of all the links
within a limb lies in a single plane that is parallel to the
saggital, coronal or transverse plane of the figure (see the
inset figure).

Constraining limb motions to these orthogonal planes
limits the range of movements that our mechanisms can
achieve. On the other hand, this design makes it possible to produce motion using standard planar
mechanisms, i.e. gears, pulleys, four-bar linkages, and transfer the rotation of a single input
motor to the motion plane of each limb using standard bevel gears, which convert rotation across
orthogonal planes. Furthermore, there are many human movements in which the motion of the
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limbs is mostly parallel to one of these planes (e.g., walking, jumping jacks). Since we focus
primarily on the motion of the limbs, we combine the head, shoulder, torso and hips to form a
single rigid component.

Oscillation Module. To realize the oscillating motion of each link in the mechanical automaton,
we introduce an oscillation module. This module uses gears, a pulley, and a four-bar linkage to
convert unidirectional rotation into an oscillating motion (see Figure 6.6).
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Bi Ci
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axles

(b) Oscillation module: exploded view
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(a) Oscillation module: stacking order

Layer 1:

Layer 2:

Layer 3:

Layer 4:
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Figure 6.3: We drive the rigid links of the automaton with oscillation modules that consist of
gears, pulleys, and four-bar linkages. These components are stacked onto axles that are connected
to each link. We show the stacking order of the parts starting from the bottom layer (a), as well
as an exploded view (b).

Ri-1

Di Ai
Bi Ci

li

Driving li

Ri-1

Pi RiQi

Di+1Driving Di+1

The input to a module Mi is the gear Di . Applying a
unidirectional rotation to Di causes the meshing gear
Ai to rotate. The rotation of Ai drives the input crank
Bi of a four-bar linkage. The linkage converts this input
rotation into an oscillating rotation of its output crank
Ci . The axles of Di , Ai and the fixed pivot of Ci are all
attached to the previous link li−1 while the moving pivot
of Ci is connected rigidly to link li . Thus, the oscillation
of Ci causes li to oscillate as well. Rotating Di also
drives the pulley wheel Pi , which is attached rigidly to
the same axle as Di . The pulley belt Qi transfers the
rotation of Pi to the other pulley wheel Ri . To prevent
slipping between Pi , Qi and Ri , we use pulley wheels
and belts that have interlocking teeth. Connecting Ri

rigidly to the same axle as the input gear Di+1 of the
next module Mi+1 propagates the motion to the next
link in the chain. Thus, we can move an entire limb of
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the automaton by attaching a chain of oscillation modules to the rigid links and driving the root
module M1 (which must be attached to a stationary link of the figure) with a uni-directional
rotation. We should emphasize that the module that drives the last link in the chain does not
have pulley parts because no further rotation propagation is required. To simplify the motion and
layout parameter computation, we restrict Di and Ai to be of the same size.

Motion Parameters. There are several parameters that define the mechanical motion of a chain
of oscillation modules. Before outlining an automated procedure to design such modules, we
first provide an overview of these parameters. The motion of a single module is defined by the
rotation speed α̇i of its input gear Di , the lengths of its four-bar linkage bi , ci , and gi , and the
initial angles θi (0) and φi (0) of the input and output cranks in the linkage (see Figure 6.4). The
length hi of the bar connecting the ends of the two cranks Bi and Ci is fully determined by the
other linkage parameters, i.e. the lengths of the remaining bars and the initial orientation of the
input and output bars. Following the book of McCarthy [68], we can express the angle φi (t ) of
the output crank Ci at time t as:

φi (t ) = arctan

(
Si (t )

Ti (t )

)
+arccos

(
Ui (t )−Vi (t )

Wi (t )

)
(6.1)

Si (t ) = 2bi ci cos(θi (t ))−2gi ci

Ti (t ) = 2bi ci sin(θi (t ))

Ui (t ) = 2bi gi (cos(θi (0))−cos(θi (t )))

Vi (t ) = 2ci (gi cos(φi (0))−bi cos(θi (0)−φi (0)))

Wi (t ) = 2ci

√
g 2

i +b2
i −2bi gi cos(θi (0)),

where θi (t ) denotes the rotation of the input crank Bi at time t . If Di is rotated by an angular
speed of α̇i , both Ai and Bi will have an angular speed of −α̇i . Thus, we can conclude that
θi (t ) = θi (0)− t α̇i .

-tαi
 + (φi-1(t) - φi-1(0)) 

φi-1(t) - φi-1(0)

tαi

bi

hi

ci

gi

θi(0) φi(0)
αi

(a) Motion parameters (b) Dependency on parent link

AiDi

li-1

AiDi

Figure 6.4: The output of an oscillation module is defined by a set of motion parameters including
the lengths and the initial orientation of the linkage bars (a). The motion of a one module in a
chain of modules depends on the motion of its parent link (b).

When we connect a chain of oscillation modules together, we must account for the fact that the
input crank rotation θi (t ) for each module depends on the motion of the parent link li−1. Since
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the axle of Ai is connected to li−1, Ai rolls around Di as li−1 rotates, which affects the total
rotation of Ai (see Figure 6.4). Specifically, if we apply the rotation speed α̇i to Di , then the
angular speed of Ai is a combination of this input rotation and the rotation of li−1. As a result,
the definition for θi (t ) in a chain of modules becomes

θi (t ) = θi (0)− t α̇i + (φi−1(t )−φi−1(0)), (6.2)

where (φi−1(t )−φi−1(0)) denotes the total rotation of Ci−1 (and thus the attached link li−1) at
time t with respect to its initial angle. Since the root module M1 that drives the first link l1 in the
chain is attached to the main support structure of the automaton rather than a moving link, we
define φ0(t ) to be 0 for all t .

We have to incorporate several constraints on the motion parameter values to ensure the oscillation
modules are physically valid. To ensure that the input crank Bi of the linkage can rotate fully
when driven by Di , we constrain the relative lengths of the linkage bars as follows [68]:

gi +bi −hi − ci < 0

(hi − ci )2 − (gi −bi )2 < 0

Further, since the argument of the arccos function in Equation 6.1 must be in the range [−1,1],
we enforce the following constraint:

2gi (bi cos(θi (0))− ci cos(φi (0))) +
2bi ci cos(θi (0)−φi (0))−b2

i − c2
i − g 2

i ≤ 0

The equations above define the space of all possible motions for a chain of rigid links using our
design based on the oscillation module. We will later use these relationships to compute motion
parameters that best approximate an input animation sequence.

Layout Parameters. In addition to the motion parameters that partially specify the configuration
of the oscillation module components, we need several additional parameters that fully define the
layout of the module.

The parameters bi ,ci , gi determine the lengths of the linkage bars, but since scaling the entire
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linkage uniformly does not change its motion, we treat the overall scale ωi as a free layout param-
eter. The other layout parameters include the radii of the gears and pulley wheels (rDi ,r Ai ,rPi ,rRi )
as well as the pulley belt length sQi and link length sli . As mentioned earlier, we restrict Di and
Ai to be the same size, so we set r Ai =rDi and eliminate r Ai as a free parameter. Given a fixed
tooth size, the tooth count of the gears, pulley wheels, and pulley belt determines the radius and
the length of these components respectively. Thus, we express rDi ,rPi ,rRi , sQi in terms of integer
tooth counts kDi ,kPi ,kRi ,kQi .

Not all assignments of layout parameters result in physically valid layouts. There are three
relevant constraints to ensure physical validity:

1. To prevent Ai from colliding with the axle of the next link li+1, we must ensure that
r Ai <ωi gi .

2. Similarly, to avoid collisions between the pulley wheel Ri of the module Mi and the axle
of the gear Ai+1 of the next module Mi+1, the relation rRi < 2r Ai+1 must hold.

3. The length of each link must match the size of the components placed on the link, so that
sli = 2r Ai+1 +ωi+1gi+1. The link length also influences the pulley belt length sQi . However,
since belts with a small amount of slack do not prevent the pulley from functioning, we
represent this relationship as an energy term in our layout optimization rather than a hard
constraint.

We also incorporate a few constraints to reflect the limitations of the fabrication process.

1. We manufacture the gears Di and Ai with a laser cutter, which limits the minimum and
maximum sizes (i.e., tooth counts) of these components. In our designs, we constrain the
tooth count to be between 14 and 80.

2. Similarly, we constrain the lengths of the linkage bars based on the minimum bar length
(8mm) that we can cut.

3. Finally, since it is difficult to create robust pulley wheels and belts with a laser cutter,
we use stock pre-made pulley parts that are only available in a discrete set of wheel and
belt sizes. To encode this constraint in our layout parameterization, we introduce a set
of binary indicator variables {u1,u2, ...,uN } to select between the N available part sizes
{v1, v2, ..., vN }, and we represent the size of each pulley part as

∑N
i=1 ui vi with the constraint∑N

i=1 ui = 1.

This set of layout parameters and constraints fully specifies the physical layout of a chain of
oscillation modules in our design. We next describe how we optimize for the motion parameters
of a chain of oscillation modules to best approximate a given motion and compute the layout that
matches the optimized motion parameters.
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6.2.2 Motion and Layout Optimization

In the previous section, we have introduced a set of motion parameters that define the motion
of a chain of oscillation modules and a set of layout parameters that fully define the layout of
these modules. Given an input motion sequence, our goal is to optimize for these parameters to
generate a physically valid automaton that approximates the motion as close as possible. We
begin our discussion with the motion approximation step. Given a set of optimized motion
parameters, we then optimize for the final layout of the oscillation modules.

Motion Approximation. Given a mocap sequence as input, we first simplify the animation by
projecting the motion of the bones within each limb onto a plane. We then run an optimization to
find the motion parameters that yield the best approximation of the planar motion that can be
generated with a chain of oscillation modules.

Planar approximation: For each kinematic chain, we start by tracing the path Xi = {xi (1), xi (2), . . . , xi (n)}

of the endpoint of the i th bone at each frame of the input animation sequence with respect to
its parent joint where n is the total number of frames. We then compute the least-squares
plane of the traced path and project each point onto this plane to obtain a planar path Yi =
{yi (1), yi (2), . . . , yi (n)}. We then snap the fitted plane to one of the saggital, coronal, or transverse
planes and update the planar path accordingly. Finally, for every frame j , we convert the motion
of each bone to a rotation Φi ( j ) around the normal of the fitted plane as:

cos(Φi ( j )) = cos(Φi ( j −1))+ yi ( j )

‖yi ( j )‖ · yi ( j −1)

‖yi ( j −1)‖ ,

where cos(Φi (1)) denotes the initial orientation of the bone with respect to its parent and
cos(Φi (0)) = 0.

Converting the rotation of a single input crank to motion in different planes for each limb requires
the use of bevel gears. Even though bevel gears can be designed to work for other angles, they are
often mounted on shafts 90 degrees apart allowing to change the rotation axis across orthogonal
planes. Thus, we snap the plane of motion for each limb to one of the saggital, coronal, or
transverse plane of the figure.

Motion parameter optimization: Given the planar bone rotation angles Φi ( j ) for each chain,
our goal is to compute motion parameters that approximate the mocap bone motion with the
corresponding rigid links in the automaton. Since each link li is driven by the output crank Ci ,
we aim to produce a mechanical motion where changes in the crank angle φi (t ) match changes
in the bone angles Φi ( j ). Thus we define the following energy term for each chain:
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EΦi =
∑

i

∑
j

(
sin

∆Φi ( j )−∆φi ( j )

2

)2

, (6.3)

where i indexes the bones, j indexes the frames of the animation sequence, ∆Φi ( j ) =Φi ( j +1)−
Φi ( j ) denotes the change in the bone angle between frames j and j+1 and ∆φi ( j ) =φi ( j+1)−φi ( j )

denotes the corresponding change in angle of the output crank Ci .

t

Φi

(a) Initialize motion approximation based on Fourier decomposition

Bone
Approx

t

Φi

(b) Optimize four-bar linkage parameters: bi, ci, gi, θi, φi

t

Φi

(c) Optimize input angular speed αi and pulley ratios pk

Figure 6.5: We apply a two-step optimization procedure to optimize for the motion parameters of
the oscillation modules used in our designs.

Recall that, φi (t ) depends on the four-bar linkage parameters bi ,ci , gi ,θi (0),φi (0), and the input
angular speed of each module α̇i . Our goal is to minimize EΦi by optimizing these parameters.
Instead of directly optimizing for α̇i , we represent α̇i in terms of the pulley ratios for all the
preceding modules in the chain. In particular, for all but the root module M1, the input angular
speed of Mi is defined as α̇i = ∏i−1

k=0 pk where pk = kPk /kRk is the pulley ratio of module Mk .
Based on this relationship, we optimize for the linkage parameters, the angular speed α̇1 of the
root module, and the pulley ratios pi of each remaining module in the chain.

We introduce a two-step optimization procedure to minimize EΦi . In the first step, given α̇1 and
pi , we solve for the linkage parameters bi ,ci , gi ,θi (0),φi (0) of each module. In the second step,
we use the computed linkage parameters to update α̇1 and pi across all the bones in the chain. In
both of these steps, we minimize the non-linear error function given in Equation 6.3 with respect
to the constraints involving the linkage parameters described in the previous section. We use
the SQP method implemented in the MATLAB Optimization Toolbox to solve these optimization
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problems, which typically converge in 5-10 iterations.

The non-linearity of the objective function defined in Equation 6.3 mandates a good initialization
of the optimization variables to obtain a valid minimum. Since we are considering periodic
motions, we employ a frequency-space analysis for this purpose. More precisely, we initialize
the motion parameters using a Fourier decomposition on the rotation angles of each bone in the
chain. The motion of each bone is then approximated using the Fourier component of highest
magnitude as

Φ( j ) =µ∗cos(2π f ( j /n)+ρ),

where µ represents the magnitude, f represents the frequency, and ρ represents the phase of the
Fourier component. This cosine function represents the change in rotation of the output crank of
the four-bar linkage as the input crank completes one full rotation cycle in n/ f frames. Assuming
a fixed initial orientation θi (0) of the input of the linkage, each sampled value of j corresponds to
a desired pair of input and output crank rotation angles (θi (0)+2π j ( f /n),Φ( j )). We sample 3
such angle pairs which uniquely define a set of linkage bar lengths that interpolate the sample
points [28]. We initialize α̇1 as 2π( f1/n) where f1 is the frequency of the Fourier component
approximating the rotation of the first bone in the chain. We assume the initial values for the
pulley size ratios are pi = (2π( fi /n))/(2π( fi−1/n)).

Having too short or too long linkage bars make the physical assembly process difficult. To prevent
this case from happening upon scaling of the four-bar linkage, we add an additional energy term
to penalize large ratios between the bar lengths. Specifically, we define the following relations
between the bar lengths:

κi = bi gi cos(θi (0))−gi ci cos(φi (0))+bi ci cos(θi (0)−φi (0))

(bi ci )

λi = gi /bi

µi = gi /ci

We add the energy term below to the first step of the optimization:

E i
bar =

(
κi− 1

κi

)2

+(λi−1)2+
(

1

λi
−1

)2

+(µi−1)2+
(

1

µi
−1

)2

A mechanical automaton performing a periodic motion should return to its starting configura-
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tion at the end of each motion cycle. However, any residual error introduced during motion
approximation might lead to drifts in the motion of the links over time. To reduce such drifts,
we explicitly define a periodicity constraint in the second step of the optimization. Specifically,
assuming the provided motion sequence contains one cycle of the desired motion, the period of
the overall motion is n frames. Each oscillation module should return back to its initial state at
the end of the motion cycle. Thus, the periodicity of each bone in the chain is an integer divisor
of n, and the input crank of the corresponding four bar linkage should be rotated by an integer
multiple of 2π, i.e. 2πmi during the given motion cycle. In addition to the propagated input
rotation parameters, we also solve for these discrete multipliers mi . We treat mi as continuous
variables and adopt a branch and bound strategy to round them to integer values. Specifically,
starting at the root module, at each iteration we round mi to bmi c and dmi e and choose the value
resulting in smaller optimization error. In practice, we have observed that duplicating the input
motion several times (10 in our experiments) and running the motion approximation to this longer
cycle improves the approximation results while still satisfying the periodicity constraints.

Layout Optimization. At the end of the motion parameter optimization step, we compute
the motion related parameters of each oscillation module driving the limbs that generate an
approximation of the input motion. Given this simplified motion, the next step is to compute
the remaining layout parameters for the oscillation modules to generate the final layout of the
mechanical automaton. Our goal is to optimize for the layout parameters that match both the
target motion parameters computed in the previous step and relative bone lengths of the input
figure as closely as possible.

The layout of an oscillation module is defined by continuous parameters (ωi , sli ), discrete
parameters (kDi ,kPi ,kRi ,kQi ), and the binary indicator variables for the pulley part sizes. Thus,
we use mixed-integer programming to search over the space of possible solutions. We formulate
the layout problem by defining an energy function that encodes several desired properties for the
layout of each kinematic chain. We now introduce these properties in detail:

• Propagated rotation: At the end of the motion parameter optimization step, we have
computed a desired angular speed α̇1 driving the root module M1 of each chain and the
ratios of the pulley wheel radii, pi , that specify how the input rotation should be propagated
to the remaining modules in the chain. The actual values of α̇1 and pi in the final automaton
depend on several layout parameters. In our designs, the input crank of the automaton
drives an input gear whose rotation is propagated to the driving gear D1 of each root
module M1. Thus, the angular speed driving M1 can be expressed as α̇1 =αI kI /kD1 where
αI is the constant angular speed of the automaton input crank, kI is the tooth count of the
input gear, and kD1 is the tooth count of D1. The pulley ratios pi can simply be expressed
as kPi /kRi (i.e., the ratios of the corresponding pulley wheel tooth counts). Based on these
expressions, we define the following energy term to penalize deviations from the desired
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angular speed and pulley ratios:

Er oti =
(α̇I kI /kD1 − α̇1)2 if i = 1

(kPi /kRi −pi )2 if i > 1
(6.4)

• Pulley belt length: In our oscillation module design, the wheels of each pulley, Pi and Ri ,
are attached to the axles at either end of link li−1 (see Figure 6.6). Thus, we can express
the tooth count (i.e., length) of the pulley belt kQi in terms of the tooth counts of the pulley
wheels, kPi and kRi , and the length sli−1 of link li−1:

kQi zp = zp (kPi +kRi )/2+2sli−1 ,

where zp is a constant defining the distance between two consecutive teeth of the pulley
wheels or belt.

The pulley wheels P1 and R1 that drive the second link l2 of each chain are part of the root
module M1. Since M1 is attached to the main support structure of the automaton rather
than a link in the chain, the tooth count kQ1 of the pulley belt Q1 is not constrained by the
length of a link. Instead, kQ1 depends on the tooth counts of the pulley wheels, P1 and Q1,
the input gear D1, and the distance ω1g1 between the fixed pivots of B1 and C1:

kQ1 zp = zp (kP1 +kR1 )/2+2(zp kD1 +ω1g1).

We recall that we provide the pulley wheels and belts from retail stores where only a limited
set of options are available. In practice, a small amount of slack in the pulley belt does
not prevent the mechanism from functioning properly. Therefore, instead of treating the
above equalities as hard constraints, we define an energy term to penalize the difference
between the belt length kQi chosen from the discrete set of available options and the ideal
belt length defined by the layout of the mechanism:

Epuli =
(kQi zp−zp

kPi+kRi
2 +2(mp kDi−1+ωi−1gi−1)−ε)2 if i = 1

(kQi zp − zp (kPi +kRi )/2+2sli−2 −ε)2 if i > 1
(6.5)

where we set ε= 1 to allow for the slack. The pulley part sizes referenced in this formulation
are represented by the corresponding binary indicator variables as described before.

• Link lengths: The oscillation module driving a link in a kinematic chain is attached to the
previous link in the chain. Thus, each link should be long enough to accommodate the
parts attached to itself. In order to preserve the shape of the input figure, the length sli of
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each link should also match as closely as possible the corresponding relative bone length
sbi . The dimensions of the bones are defined up to a scale using a free scale variable ξ.
Thus, the desired length of each rigid link is sli = ξsbi . To penalize the deviations from the
original bone lengths, we add the following term to our energy function for each link:

Esli
= (sli −ξsbi )2 (6.6)

We further desire symmetric bone pairs (e.g., left and right upper leg bones) to have similar
lengths. For each such symmetric bone pair, we penalize the differences between the
corresponding link lengths as,

Esi j = (sli − sl j )2. (6.7)

We combine all the energy terms for each link li in each kinematic chain c j to obtain the final
energy function:

E =∑
c j

∑
li∈c j

wr oti Er oti +wpuli Epuli +wsli
Esli

+ ∑
i , j∈S

wsi j Esi j , (6.8)

where S denotes symmetric bone tuples and wr oti , wpuli , wsli
, and wsi j are the weights for each

energy term. In our experiments, we set wr oti and wpuli to 5 and set wsli
and wsi j to 1.

Given the energy function E and all the linear hard constraints described previously, we formulate
the optimization as a mixed integer programming problem and solve it using a branch-and-bound
technique. More specifically, we use the constrained mixed-integer solver Gurobi [42]. During
the optimization process, the solver treats the discrete unknowns as continuous variables and
generates a solution where these variables have fractional values. The solver then constructs a
search tree where each branch represents the result of constraining a discrete variable to either
the floor or ceiling of its fractional value from the continuous solution.

In our experiments, this optimization process takes around 100 seconds to find a feasible solution
for a problem with 360 binary, 10 integer, and 10 continuous variables. The output of this
optimization is a set of layout parameters that fully define the size of the mechanical parts in each
oscillation module. Since each module has a predefined structure, the optimized parameters also
define the final layout of the modules.
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6.2.3 Unified Layout Design

Once the motion and layout parameters of the oscillation modules driving each limb of the input
figure are optimized, the final step is to compose all the kinematic chains into a unified design
that can be driven by a single input crank. This process involves choosing the orientation and
position of the crank and then generating mechanisms that propagate the crank rotation to the root
module of each moving chain in the automaton. Since we assume each limb is moving in one of
the principal orthogonal planes, we define a set of rules considering the direction of motion to
generate the unified design automatically.

In our designs, we choose to attach the input crank to the fixed torso link of the figure. We use
pulleys and bevel gears (if necessary) to propagate the rotation of the input crank to the rest of
the automaton. We arrange these pulleys and bevel gears on the stationary torso, head and (in
some cases) shoulder links based on the orientations of the motion planes for the moving limbs.

leftright
front

back

Figure 6.6: The main support structure of the mechanical automaton, the torso, is oriented based
on the motion planes of the moving limbs. Both sides of this support is used to accommodate the
pulleys propagating the input crank rotation to the limbs. In special cases, the shoulders are used
as support structures as well.

If the motion planes of the moving limbs are all parallel to either the saggital or coronal planes
of the figure, we orient the input crank, torso and head links parallel to the motion plane (see
Figure 6.6). We recall that the root module of each chain must be placed on one of the stationary
links. We position the root modules of the arms on the head link and the root modules of the legs
on the torso link. Since pulleys are better suited to propagate motion along a longer distance,
we use pulleys to connect the input crank to the driving gear of each root module. If the limbs
move parallel to the saggital plane, we position the pulleys on the left and right sides of the
torso/head links, and for coronal plane motion, we put the pulleys on the front and back sides of
the torso/head links.
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If the motion planes of the moving limbs are all parallel to the transverse plane, or if the motion
planes are not all parallel to each other, we incorporate bevel gears into our unified design (see
Figure 6.6). If all of the non-transverse motion planes are parallel to the coronal plane, then we
orient the input crank, torso and head links parallel to the coronal plane as well. Otherwise, we
orient these components parallel to the saggital plane. We orient the root module of each chain
so that its rotation plane is parallel to the rotation plane of the input crank. We place the root
modules for the arms and legs on the head and torso links, respectively. For chains whose motion
plane is orthogonal to the rotation plane of the input crank, we use bevel gears to convert the
rotation of the output crank C1 and pulley wheel R1 of the root module to the appropriate motion
plane.

We observe a special case when the motion plane of an arm is parallel to the coronal or transverse
plane. We then use the shoulder link as an additional support structure to accommodate the root
module of the arm. We orient the shoulder to be parallel to the motion plane of the arm, and if
the input crank rotates in a different plane, we add a bevel gear configuration to convert the input
crank rotation to the appropriate motion plane.

At the end of unified layout design stage, our automata are ready to be operated from a single
input motor or crank.

6.3 Evaluation

Automatic mechanism design is a very challenging task. In order to simplify this task and
generate mechanisms using standard mechanical components, we have made several assumptions.
As one of the main assumptions, we have assigned a planar motion to each of the moving limbs
of the input figure. In order to evaluate how well this planar motion simplification algorithm
approximates various human motions, we analyze a large number of mocap sequences from
existing motion databases.

We first trace the path Xi = {xi (1), xi (2), ..., xi (n)} of the endpoint of the i -th bone of a kinematic
chain c j at each frame of the input motion. We compute the common least squares plane P j (n,d)

of all such paths for c j . We then measure the fitting error as the deviation from a planar motion
over n frames as:

E j := ∑
bi∈c j

∑
n

(n · xi (n)+d). (6.9)

In order to account for differences in the lengths of the paths traced by each bone, we normalize
the error by the total length of the paths, measured as m j :=∑

bi∈c j

∑
n ‖xi (n +1)− xi (n)‖. The
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final planar fitting score of the motion is then computed over all the chains as:

Mp = min
j

m j /(E j +ε), (6.10)

with ε= 0.01 used as a regularizer. Essentially, Mp measures how well a non-trivial motion can
be approximated using a set of planes, one for each chain.

We evaluate this planarity measure for a total of 80 mocap sequences from the CMU motion
database [14]. We observe the following motion types (about 40% of the database) to be
well suited for our algorithm: walking, running, jogging, exercising, waving, drinking as they
consistently get high scores (Mp > 10). We call such motions good motion types. On the other
hand, sequences like swimming, swordplay, fishing (Mp < 2) contain large out-of-plane motions,
and hence our algorithm cannot replicate them faithfully.

Our system produces a mechanical automaton design for a given input motion. We simulate
the mechanism using forward kinematics to qualitatively validate how faithfully the sequences
recreate the input motion. Specifically, we build a mechanism graph G = (V ,E), where each node
vi ∈V represents a part (e.g., a gear or a pulley) and each edge ei j ∈ E connecting the vertices vi

and v j represents the relation between the corresponding parts. In our setup, typical relations
include the coaxial or parallel-axis properties of the gears, and the motion chains comprising of
pulleys and four-bar linkages. At every frame of the motion sequence, we assume that the input
crank rotates clockwise with a constant speed. We propagate this rotation along the edges of the
mechanism graph to compute the position and orientation of each component in the mechanism.
These graphs are free of any loops by construction.

In Figure 6.7, we present representative realizations for some of the good motion types. For each
motion type, several snapshots of the original animation and the corresponding simulation frames
are provided. In all of our example automata, the torso of the figure has been used as the main
support structure. A video demonstrating the generated automata in operation can be accessed
from the project page.1

Fabrication. In order to demonstrate the physical validity of the generated automata, we have
fabricated two examples, one for each of the major types of layout configurations as shown in
Figure 6.8: the walking sequence consists of parallel motion planes and does not require any
bevel gears; the dancing sequence requires to convert motion to two different planes. In this
example, in addition to the torso of the figure, the shoulders have also been used as support
structure since the arms move parallel to the transverse plane of the figure. For both examples, to
propagate the rotation of the driver gear to each kinematic chain, pulleys are used to fill up the
space between the driver gear and the root of the chain along the support structure.

1http://www.duygu-ceylan.com/duygu-ceylan/mechAuto.html
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Figure 6.7: For each of the example automata generate by our system, snapshots of the original
motion sequence and the corresponding simulation result of the automata are given for various
time frames.
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Figure 6.8: Physical prototypes of the walking (top) and the dancing examples show several
snapshots of the input figure performing the desired motion and the corresponding mechanical
automata.

In these designs, we use off-the-shelf pieces for the bevel gears, pulleys, and pins. The linkages
and gears are laser cut based on the dimensions as prescribed by our optimization. The most time
consuming part is often assembling the pieces, which is done manually. However, given that
our design consists of similar modular components (i.e., the oscillation modules) the assembly
process is relatively straightforward (albeit somewhat tedious). We use a single speed motor to
drive the resulting automata.

User control. Although we propose a fully automatic system, we point out various ways the user
can control the final design.

(i) Depending on the target fabrication method, the user can provide additional constraints. Based
on the specification of our laser cutter, we used minimum and maximum gear tooth counts of 14
and 80 (given a 1mm tooth size). These constraints have a direct effect on the realization of the
desired motion, specifically for links that require a large change in input angular speed.

(ii) Our system restricts the motion planes of the limbs to be parallel to the saggital, coronal
or transverse plane of the figure. While we automatically generated the motion planes in our
experiments, the user can also manually specify the motion plane orientations.
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(iii) Finally, the user can set a threshold for the minimum angular range for the motion of the
bones (0.35 radians in our results). We set bones oscillating with an angular range less than this
threshold to be fixed, thus reducing the complexity of the generated mechanisms.

6.4 Closing Remarks

In this chapter, we have presented an algorithm to automatically realize a mechanical automaton
starting from an input mocap sequence. We have first analyzed the characteristics of typical
target motions and the requirements of the mechanical components. We have then designed an
oscillation module that can generate kinematic chain motions with links that oscillate at different
phases and frequencies. We propose a motion approximation algorithm that converts an input
sequence to a mechanically realizable motion through the use of such modules. We automatically
determine the parameters and spatial layout of the mechanical parts that are necessary to realize
the target motions while taking into account physical and fabrication constraints.

We demonstrate examples with non-trivial human motions with multiple moving limbs. We
enforce the use of standard planar mechanical components to simplify the fabrication and
assembly processes. This restriction results in various aspects of certain motions that our method
fails at reproducing accurately. We believe that further investigations about other mechanism
types, such as five- or six-bar linkages, that can potentially increase the motion approximation
quality are valuable. In addition, our current method optimizes for the motion parameters of the
mechanism first, and then solves for the layout of the parts. It is possible that a joint (or perhaps
iterative) optimization of these parameters could produce better motion approximations in the
final automaton designs.

In the motion approximation part of our method, we use an objective function based on the
rotation angles of each joint. Our intuition is that the changes in joint angles have a significant
effect on how we perceive a motion since they are visually well exposed in the static body posture.
Developing better perceptual metrics for comparing human motions, however, is an interesting
avenue for future work.

We assume periodic motions as input to allow driving the automaton indefinitely with a constant-
speed input rotation. While we did not observe noticeable drift for extended operation of
our assemblies, machining imprecisions or mechanical wear could potentially cause temporal
deviations that over time reduce the accuracy of the motion approximation. At a certain point,
the automaton might have to be partially disassembled to re-align the parts to the original
configuration.

Currently, we have focused only on the kinematics of the generated automata, trying to realize the
input motions as close as possible. It will be interesting to consider the stability aspect of these
mechanisms and investigate the design of self-standing mechanical figures that remain balanced
while they move. Generating such automata requires a method that accounts for both the stability
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of the design as well as the target motion. One challenge here is that the placement of mechanical
components (e.g., gears, linkages) affects the weight distribution and thus the stability of the
automaton.

(a) captured motion (b) generated automaton

In our examples, we have primarily used
motions selected from the existing motion
databases as input. However, recent ad-
vances in commercial motion sensing in-
put devices such as the Microsoft Kinect
enable easy tracking of the human skele-
ton and thus provide an interface to di-
rectly capture input motions. Being a
fully automatic method, we believe that
our system has potential to be applica-
ble to such captured input motions. We
demonstrate a first result along this direc-

tion with the kendo sequence shown in the inset figure. For this example, we have used the Kinect
to record a performance and the commercial tool ipi Soft to extract the human skeleton with the
commercial tool ipi Soft [2013]. We have supplied the extracted skeleton motion as input to our
system.

We believe that integrating our system with a real-time motion capturing interface brings up many
exciting future applications. Specifically, we envision that providing the users with real-time
feedback about the quality of the motion approximation and the complexity of the generated
automata will be invaluable. This feedback might enable the users to make slight changes
in the desired motions while improving the quality of the physical recreations of the target
motions. Providing such feedback obviously requires further investigations on the nature of the
typical human motions and capabilities of various mechanical components. We believe that such
advanced analysis will play a crucial role in bringing the digital and the physical worlds further
closer.

Finally, we believe that mechanism design is a process that can benefit from a data-driven
approach. Specific combinations of mechanical building blocks reoccur in realizations of similar
motions. For example, a slider-crank mechanism, commonly used in piston engines, is a building
block used to convert rotational motion into reciprocating translation. This observation is almost
similar to the analysis presented in the previous chapter to detect geometric similarities between
the elements of a building. Mechanical building blocks can be considered as the templates we
desire to fit to the given input motions. Based on this analogy, functional similarity between
motions can be defined as the similarity between the type and the parameters of the mechanical
buildings blocks used to create them. We believe that investigating the concept of functional
similarity is an exciting research direction.
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7 Conclusion and Future Work

This dissertation has presented shape analysis algorithms aimed at facilitating the 3D reconstruc-
tion and modeling tasks while simultaneously performing structure discovery in the underlying
content.

We have focused our investigations mainly in the domain of image-based reconstruction of
urban data sets. Special emphasis was put on exploring symmetry as the main analysis tool due
to its ubiquity in such data sets. We have presented coupled approaches for simultaneous 3D
reconstruction of buildings and detection of symmetry priors.

In the latter part of this dissertation, we have extended our analysis methods to a different problem
domain, namely automated design and fabrication of mechanical figures capable of producing
motions such as walking and dancing. We have demonstrated that shape analysis is a crucial
component for addressing this problem as well. Specifically, we have made design decisions by
analyzing the characteristics of the target motions and the requirements of the physical fabrication
process.

This chapter summarizes our main findings and suggests several directions for future explorations.

7.1 Summary and Take-Home Messages

Coupling Reconstruction and Analysis: Many digital applications require accurate reconstruc-
tion of the physical world together with a high-level shape analysis of the underlying content.
On the one hand, obtaining an accurate and high-quality representation of the physical world is
necessary to create precise replicas of real-world objects for purposes such as prototyping, reverse
engineering, or industrial simulations. On the other hand, automatic extraction of semantic
knowledge from the digital content similar to a human being is crucial. To illustrate, given a 3D
reconstruction of a building, discovering patterns in the geometry and the spatial arrangement of
its elements facilitates many editing tasks.
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A central theme in the algorithms we have presented is to handle these accurate reconstruction
and high-level shape analysis tasks in a coupled approach. Our main motivation stems from the
fact that these tasks are complementary for each other. In the context of 3D urban reconstruction,
this coupling also enables to break the problem of cyclic dependency between reconstruction
and structure detection: While consolidating observations across symmetric and repeating ele-
ments enables us to remove noise and fill holes in 3D reconstructions, accurate and clean data
measurements are necessary to facilitate detection of these structures.

Our algorithms focus on simultaneously performing structure discovery and 3D reconstruction.
We demonstrate that combining early estimates about the structural priors and intermediate 3D
reconstructions into a unified framework helps to refine both of these initial measurements.

Use of Suitable Priors: A feature common to all the algorithms we have presented is to use
specific priors suitable for the target problem domain.

For the purpose of 3D reconstruction of urban data sets, we have utilized mainly two types of
priors. While we have explored line and plane features as dominant geometric priors in such
data sets, we have explored structural priors in the form of repetitions of the individual building
elements. Geometric priors enable to capture characteristics of the underlying data such as sharp
facade corners. Symmetry priors, on the other hand, provide non-local coupling between multiple
observations of the same geometry.

Similarly, for the automated mechanism design problem, we have decomposed target motions
into a set of planar motions. This planarity assumption enables us to realize the desired motion
with standard planar mechanisms and thus facilitates the fabrication and assembly processes.

At this point, we would like to emphasis the trade-off between the generality and the performance
of the proposed algorithms. While priors are effective in tackling challenging tasks, they typically
impose limitations on the applicability of the proposed approaches. For example, we demonstrate
that the reconstruction algorithms we have proposed in Chapters 3 and 4 outperform general
purpose dense [33] and sparse [103] reconstruction methods. On the other hand, these algorithms
explore the presence of dominant repetitions in the captured scenes and thus are as effective as
the underlying repetition patterns.

Despite the limitations imposed, however, we encourage the use of suitable priors for many
challenging problem domains. A good set of priors often provides natural assumptions and
generalizes elegantly to many practical use cases. Similar to the geometric and structural priors
we have explored in the context of 3D reconstruction of buildings, cuboid proxies for editing
of images of man-made environments [124] or smoothness and visual hull priors for shape
completion [57] are used as such priors. We believe that suitable prior information effectively
improves the quality of the processing results for many ill-posed problems.

Reformulation in Alternative Problem Domains: For some challenging geometry analysis
problems, it is possible to map the problem into a different space where specific relations become
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more apparent. This mapping between the problem domains can be considered similar to the
Fourier transform which has been a cornerstone in signal processing applications to transform
signals between the time and frequency domain.

In context of shape and geometry analysis, one elegant examples of such a mapping is the
structural regularity detection framework of Pauly et al. [84]. Detection of repetition grids in 3D
geometry is performed by mapping the problem to the space of transformations and detecting
resulting characteristic grids in this transformation space.

We employ a similar approach for detecting structured variations between the elements of complex
architectural data sets (see Chapter 5). It is challenging to detect such variations by comparing the
geometry of the individual elements, especially in case of noisy and partial data measurements.
Instead, we reformulate this problem as detecting similarities in the deformation modes of a set of
template models. The advantages of mapping this problem to the deformation space of template
models are twofold. First, deformable template models enable us to capture structured variations
of a base geometry which are otherwise difficult to characterize. Second, we can accumulate
observations from different templates in the deformation space making our approach more robust
to noise and outliers.

We believe that similar problem reformulations and mappings might be possible for other shape
analysis tasks and thus encourage the reader to perform investigations along this direction.

Combination of Multiple Data Representations: With the advances in acquisition technologies
we witness an increase in variety of digital data sources. In addition to 2D data representations
such as images and videos, 3D data acquisition methods provide digital data in the form of
polygonal meshes or point clouds. In another thread, motion capture is becoming more convenient
with the advent of commercial depth sensing devices such as the Microsoft Kinect.

In most of our algorithms, we have used images and intermediate 3D reconstructions obtained
from these images in an interleaving manner. We believe that each of these data representations
have specific advantages. Images are often high-resolution and thus better capture fine details of
the underlying geometry. However, features extracted from the images often also contain noise
and outliers and lack depth information. 3D data representations, on the other hand, provide
depth information and act as a bridge to link multiple images. By accumulating observations
across multiple images, they enable to distinguish between the actual features and noise.

We have demonstrated an elegant approach for combining 2D and 3D line features in Chapter 3
for reliable repeating element detection. We show that accumulating 2D edges via a 3D line
reconstruction step acts as a filter to prune out noisy features. On the other hand, features missed
due to aggressive pruning are later recovered by leveraging the 2D edges via smart hypotheses
obtained from the 3D data. We believe that combining multiple data representations in the context
of many geometry capture problems allows to benefit from their individual advantages.
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Chapter 7. Conclusion and Future Work

7.2 Open Questions and Future Work

Accurate digitization of the physical world and extracting semantic information from the digital
content remains a challenging and open problem. Therefore, we expect to see more future work
in the domain of shape reconstruction and analysis.

We believe that there are certain immediate extensions to the algorithms we have presented in
this dissertation. To illustrate, in our image-based reconstruction frameworks we have mainly
explored planar repetitions arranged in 1- or 2-dimensional grids. Incorporating other types of
repetition patterns such as rotational symmetries as found in dome-like structures is a possible
extension.

A unique feature of the image-based reconstruction algorithms we have proposed is to explore
the coupling between data acquisition and structure detection. Even though we have showcased
results in the domain of urban reconstruction, we believe that applying similar principals for
indoor reconstruction is a promising research direction. Similar to buildings, indoor environments
are rich both in geometric and structural priors. For example an office environment consists
of dominant plane features corresponding to the floor, walls, or table tops. In addition, certain
objects such as chairs or bookshelves occur multiple times. We have seen some research efforts
that explore these geometric [32] and repetition [53] priors. However, these approaches do not
explore the coupling between the reconstruction and structure detection tasks. With advances in
commercial depth sensor devices such as the Microsoft Kinect, we envision to perform detection
of geometric and structural priors during the scanning process where the extracted priors are
immediately used to improve the reconstruction quality. A recent effort along these directions is
the SLAM++ system of Moreno et al. [94]. This system searches for objects that are scanned in a
pre-processing stage in the incoming capture data. However, we believe that there is still a lot
of room for improvement for such a system. For example, we predict that exploring geometric
abstractions such as planes and cuboid proxies during an online scanning session provides
compact representations enabling longer capture sessions. In addition, these geometric priors are
expected to help registration of the incoming data frames more robustly thus reducing possible
drifts in long captures.

We have presented interesting image-space interaction metaphors in Chapter 4 where certain
image edits are automatically propagated to a collection of images using the extracted 3D
scene information. We believe that collective editing of images is becoming an interesting
and challenging open problem with the growing number of images taken at a specific event or
environment. Developing such interaction possibilities requires analyzing large image collections
and extracting depth information relating them. For images of man-made environments, however,
use of cuboid like proxies to compute sparse depth information might be sufficient. This sparse
depth information can later be used to link the input images and propagate edits performed in one
image to the rest.

We have proposed an algorithm to detect structured variations among the elements of complex

114



7.2. Open Questions and Future Work

architectural data sets. At the core of this algorithm is an approach that utilizes template proxies
to analyze the geometric structure of the elements. We believe that such an analysis has potential
to be extended towards the ambitious goal of automatic architecture style depiction. Geometries
of the individual elements of a building and patterns observed in the spatial arrangement of
these elements are among the key ingredients to specify an architecture style. Thus, we believe
that detecting suitable matches from a database of template models and observing common
deformation patterns provide important cues about the style of a building. However, there are
certainly other aspects such as material properties or method of construction that are crucial for
characterizing architecture style. Thus it is critical to extend shape analysis algorithms to capture
such properties as well.

We believe that the notion of style is not restricted to architecture and in fact the proposed analysis
algorithms can be extended to other data sets. Investigating this problem for depicting the style
of furniture or even textiles is an interesting research direction.

Finally, the advances in sensing technologies indicate that we will be witnessing a revolution in
how we capture and process data. Google has recently announced the Project Tango [39] that
brings the possibility of having depth sensors in our mobile devices. In other words, in near
future the images we take might be augmented with the additional depth information. We believe
that this will create a new perspective for all the image processing applications facilitating many
challenging tasks such as image segmentation or object detection.

Concurrent to the advances in data acquisition technologies, we are also experiencing rapid
improvements in digital manufacturing. The ability to manufacture customized objects creates a
demand for fabricating not only static objects but also functional models. We have demonstrated
an early effort in automating the process of designing functional models focusing on the specific
problem of mechanical automata design. We are expecting a growing demand for designing other
types of functional models. In fact, we have recently seen research efforts in analyzing shapes
from a perspective of functionality [125, 52]. Extending these analysis methods, we believe that
adding functionality to static objects is an interesting research direction. A possible approach to
tackle this problem is to adopt a data-driven approach. To illustrate, knowledge about how to
open and close the doors of a car model might be useful to place joints to add functionality to the
door of a plane model as well.
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A SfM Comparisons

In the following, we compare our symmetry-based SfM method to Bundler [103] and the method
of Zach et al. [122]. For several data sets provided in Chapter 4, we include example input
images and the user template (shown in orange) provided to guide the repetition detection. In
order to make this comparison more clear, we demonstrate the dense reconstructions produced by
PMVS [33], a state-of-the-art multiview stereo algorithm, using the camera parameters computed
by each method. We also show the final 3D grid and its projection in several example images.
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B Template Database

For the results presented in Chapter 5 of this dissertation, we have used the following window
template models. Templates used for the evaluation in Figure 5.8b are shown in orange.
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C Chapter 5 Detailed Results

In the following, for each dataset we provide a selection of the input images, 2D edges detected
in the images, and views of the computed 3D line features. We provide element smoothness
matrices computed in the first and final iterations of our algorithm together with the detected
element similarities. We further include close-up views of the templates instances matched to the
elements.
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